Fabrication and Characterization of Dielectric ZnCr2O4 Nanopowders and Thin Films for Parallel-Plate Capacitor Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Reagents
2.2. Preparation of ZnCr2O4 Nanoparticle Suspensions
2.3. Characterization of ZnCr2O4 Nanoparticles, Pellets, Films and Fabricated Devices
3. Results and Discussion
3.1. Raman Spectroscopy
3.2. Structure Analysis
3.3. Morphology and Elemental Analysis
3.4. Dielectric Properties of ZnCr2O4 Nanopowders
3.5. Fabrication of ZnCr2O4 Nanoparticle Based Thin Films
3.6. Device Fabrication
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef]
- O’Neill, H.S.C.; Dollase, W.A. Crystal structures and cation distributions in simple spinels from powder XRD structural refinements: MgCr2O4, ZnCr2O4, Fe3O4 and the temperature dependence of the cation distribution in ZnAl2O4. Phys. Chem. Miner. 1994, 20, 541–555. [Google Scholar] [CrossRef]
- Wang, Y.L.; An, T.; Yan, N.; Yan, Z.F.; Zhao, B.D.; Zhao, F.Q. Nanochromates MCr2O4 (M = Co, Ni, Cu, Zn): Preparation, Characterization, and Catalytic Activity on the Thermal Decomposition of Fine AP and CL-20. ACS Omega 2020, 5, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Arslan, M.T.; Ali, B.; Gilani, S.Z.A.; Hou, Y.L.; Wang, Q.; Cai, D.L.; Wang, Y.; Wei, F. Selective Conversion of Syngas into Tetramethylbenzene via an Aldol-Aromatic Mechanism. ACS Catal. 2020, 10, 2477–2488. [Google Scholar] [CrossRef]
- Dong, S.; Niu, A.; Wang, K.; Hu, P.; Guo, H.; Sun, S.; Luo, Y.; Liu, Q.; Sun, X.; Li, T. Modulation of oxygen vacancy and zero-valent zinc in ZnCr2O4 nanofibers by enriching zinc for efficient nitrate reduction. Appl. Catal. B Environ. 2023, 33, 122772. [Google Scholar] [CrossRef]
- Song, H.Q.; Laudenschleger, D.; Carey, J.J.; Ruland, H.; Nolan, M.; Muhler, M. Spinel-Structured ZnCr2O4 with Excess Zn Is the Active ZnO/Cr2O3 Catalyst for High-Temperature Methanol Synthesis. ACS Catal. 2017, 7, 7610–7622. [Google Scholar] [CrossRef]
- Sonkusare, V.N.; Chaudhary, R.G.; Bhusari, G.S.; Mondal, A.; Potbhare, A.K.; Mishra, R.K.; Juneja, H.D.; Abdala, A.A. Mesoporous Octahedron-Shaped Tricobalt Tetroxide Nanoparticles for Photocatalytic Degradation of Toxic Dyes. ACS Omega 2020, 5, 7823–7835. [Google Scholar] [CrossRef]
- Xiong, R.; Zhou, X.; Chen, K.; Xiao, Y.; Cheng, B.; Lei, S. Oxygen-Defect-Mediated ZnCr2O4/ZnIn2S4 Z-Scheme Heterojunction as Photocatalyst for Hydrogen Production and Wastewater Remediation. Inorg. Chem. 2023, 62, 3646–3659. [Google Scholar] [CrossRef]
- Kavasoglu, N.; Kavasoglu, A.S.; Bayhan, M. Comparative study of ZnCr2O4-K2CrO4 ceramic humidity sensor using computer controlled humidity measurement set-up. Sens. Actuators A-Phys. 2006, 126, 355–361. [Google Scholar] [CrossRef]
- Liang, Y.C.; Cheng, Y.R.; Hsia, H.Y.; Chung, C.C. Fabrication and reducing gas detection characterization of highly-crystalline p-type zinc chromite oxide thin film. Appl. Surf. Sci. 2016, 364, 837–842. [Google Scholar] [CrossRef]
- Liang, Y.C.; Hsia, H.Y.; Cheng, Y.R.; Lee, C.M.; Liu, S.L.; Lin, T.Y.; Chung, C.C. Crystalline quality-dependent gas detection behaviors of zinc oxide-zinc chromite p-n heterostructures. CrystEngComm 2015, 17, 4190–4199. [Google Scholar] [CrossRef]
- Guo, R.; Shang, X.; Shao, C.; Wang, X.; Yan, X.; Yang, Q.; Lai, X. Ordered large-pore mesoporous ZnCr2O4 with ultrathin crystalline frameworks for highly sensitive and selective detection of ppb-level p-xylene. Sens. Actuators B Chem. 2022, 365, 131964. [Google Scholar] [CrossRef]
- Yu, G.L.; Wang, W.R.; Jiang, C. Linear tunable NIR emission via selective doping of Ni2+ion into ZnX2O4 (X = Al, Ga, Cr) spinel matrix. Ceram. Int. 2021, 47, 17678–17683. [Google Scholar] [CrossRef]
- Dixit, T.; Agrawal, J.; Muralidhar, M.; Murakami, M.; Ganapathi, K.L.; Singh, V.; Rao, M.S.R. Exciton Lasing in ZnO-ZnCr2O4 Nanowalls. IEEE Photonics J. 2019, 11, 4501307. [Google Scholar] [CrossRef]
- Dixit, T.; Agrawal, J.; Ganapathi, K.L.; Singh, V.; Rao, M.S.R. High-Performance Broadband Photo-Detection in Solution-Processed ZnO-ZnCr2O4 Nanowalls. IEEE Electron. Device Lett. 2019, 40, 1143–1146. [Google Scholar] [CrossRef]
- Peng, C.; Gao, L. Optical and Photocatalytic Properties of Spinel ZnCr2O4Nanoparticles Synthesized by a Hydrothermal Route. J. Am. Ceram. Soc. 2008, 91, 2388–2390. [Google Scholar] [CrossRef]
- Gao, H.J.; Wang, S.F.; Fang, L.M.; Sun, G.A.; Chen, X.P.; Tang, S.N.; Yang, H.; Sun, G.Z.; Li, D.F. Nanostructured spinel-type M(M = Mg, Co, Zn)Cr2O4 oxides: Novel adsorbents for aqueous Congo red removal. Mater. Today Chem. 2021, 22, 100593. [Google Scholar] [CrossRef]
- Kagomiya, I.; Kohn, K.; Toki, M.; Hata, Y.; Kita, E. Dielectric anomaly of ZnCr2O4 at antiferromagnetic transition. J. Phys. Soc. Jpn. 2002, 71, 916–921. [Google Scholar] [CrossRef]
- Javed, M.; Khan, A.A.; Khan, M.N.; Kazmi, J.; Mohamed, M.A. Investigation on Non-Debye type relaxation and polaronic conduction mechanism in ZnCr2O4 ternary spinel oxide. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2021, 269, 115168. [Google Scholar] [CrossRef]
- Naz, S.; Durrani, S.K.; Mehmood, M.; Nadeem, M. Hydrothermal synthesis, structural and impedance studies of nanocrystalline zinc chromite spinel oxide material. J. Saudi Chem. Soc. 2016, 20, 585–593. [Google Scholar] [CrossRef]
- Dey, J.K.; Majumdar, S.; Giri, S. Coexisting exchange bias effect and ferroelectricity in geometrically frustrated ZnCr2O4. J. Phys.-Condens. Matter 2018, 30, 235801. [Google Scholar] [CrossRef]
- Shafqat, M.B.; Ali, M.; Atiq, S.; Ramay, S.M.; Shaikh, H.M.; Naseem, S. Structural, morphological and dielectric investigation of spinel chromite (XCr2O4, X = Zn, Mn, Cu & Fe) nanoparticles. J. Mater. Sci.-Mater. Electron. 2019, 30, 17623–17629. [Google Scholar] [CrossRef]
- Binks, D.J.; Grimes, R.W.; Rohl, A.L.; Gay, D.H. Morphology and structure of ZnCr2O4 spinel crystallites. J. Mater. Sci. 1996, 31, 1151–1156. [Google Scholar] [CrossRef]
- Xiao, X.; Liu, X.; Zhao, H.; Chen, D.; Liu, F.; Xiang, J.; Li, Y. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv. Mater. 2012, 24, 5762–5766. [Google Scholar] [CrossRef] [PubMed]
- Mancic, L.; Marinkovic, Z.; Vulic, P.; Moral, C.; Milosevic, O. Morphology, structure and nonstoichiometry of ZnCr2O4 nanophased powder. Sensors 2003, 3, 415–423. [Google Scholar] [CrossRef]
- D’Ippolito, V.; Andreozzi, G.B.; Bersani, D.; Lottici, P.P. Raman fingerprint of chromate, aluminate and ferrite spinels. J. Raman Spectrosc. 2015, 46, 1255–1264. [Google Scholar] [CrossRef]
- Wang, Z.W.; Lazor, P.; Saxena, S.K.; Artioli, G. High-pressure Raman spectroscopic study of spinel (ZnCr2O4). J. Solid State Chem. 2002, 165, 165–170. [Google Scholar] [CrossRef]
- Marinković Stanojević, Z.V.; Romčević, N.; Stojanović, B. Spectroscopic study of spinel ZnCr2O4 obtained from mechanically activated ZnO–Cr2O3 mixtures. J. Eur. Ceram. Soc. 2007, 27, 903–907. [Google Scholar] [CrossRef]
- Kant, C.; Deisenhofer, J.; Rudolf, T.; Mayr, F.; Schrettle, F.; Loidl, A.; Gnezdilov, V.; Wulferding, D.; Lemmens, P.; Tsurkan, V. Optical phonons, spin correlations, and spin-phonon coupling in the frustrated pyrochlore magnets CdCr2O4 and ZnCr2O4. Phys. Rev. B 2009, 80, 214417. [Google Scholar] [CrossRef]
- Xie, D.J.; Luo, Q.Y.; Zhou, S.; Zu, M.; Cheng, H.F. One-step preparation of Cr2O3-based inks with long-term dispersion stability for inkjet applications. Nanoscale Adv. 2021, 3, 6048–6055. [Google Scholar] [CrossRef]
- Zuo, J.; Xu, C.; Hou, B.; Wang, C.; Xie, Y.; Qian, Y. Raman Spectra of Nanophase Cr2O3. Raman Spectrosc. 1996, 27, 921–923. [Google Scholar] [CrossRef]
- Yang, J. Structural analysis of perovskite LaCr1—xNixO3 by Rietveld refinement of X-ray powder diffraction data. Acta Crystallogr. Sect. B 2008, 64, 281–286. [Google Scholar] [CrossRef]
- Nazli, H.; Ijaz, W.; Kayani, Z.N.; Razi, A.; Riaz, S.; Naseem, S. In-Situ oxidation time dependent structural, magnetic and dielectric properties of electrodeposited magnesium-iron-oxide thin films. Mater. Today Commun. 2023, 35, 106045. [Google Scholar] [CrossRef]
- Behera, B.; Nayak, P.; Choudhary, R.N.P. Structural and impedance properties of KBa2V5O15 ceramics. Mater. Res. Bull. 2008, 43, 401–410. [Google Scholar] [CrossRef]
- Azam, M.; Riaz, S.; Akbar, A.; Naseem, S. Structural, magnetic and dielectric properties of spinel MgFe2O4 by sol–gel route. J. Sol-Gel Sci. Technol. 2015, 74, 340–351. [Google Scholar] [CrossRef]
- Batoo, K.M.; Mir, F.A.; Abd El-sadek, M.S.; Shahabuddin, M.; Ahmed, N. Extraordinary high dielectric constant, electrical and magnetic properties of ferrite nanoparticles at room temperature. J. Nanoparticle Res. 2013, 15, 2067. [Google Scholar] [CrossRef]
- Bagade, A.A.; Rajpure, K.Y. Development of CoFe2O4 thin films for nitrogen dioxide sensing at moderate operating temperature. J. Alloys Compd. 2016, 657, 414–421. [Google Scholar] [CrossRef]
- Nazli, H.; Anjum, R.; Iqbal, F.; Awan, A.; Riaz, S.; Kayani, Z.N.; Naseem, S. Magneto-dielectric properties of in-situ oxidized magnesium-aluminium spinel thin films using electrodeposition. Ceram. Int. 2020, 46, 8588–8600. [Google Scholar] [CrossRef]
- Chavan, A.R.; Somvanshi, S.B.; Khirade, P.P.; Jadhav, K.M. Influence of trivalent Cr ion substitution on the physicochemical, optical, electrical, and dielectric properties of sprayed NiFe2O4 spinel-magnetic thin films. RSC Adv. 2020, 10, 25143–25154. [Google Scholar] [CrossRef]
- Gutiérrez, D.; Foerster, M.; Fina, I.; Fontcuberta, J.; Fritsch, D.; Ederer, C. Dielectric response of epitaxially strained CoFe2O4 spinel thin films. Phys. Rev. B 2012, 86, 125309. [Google Scholar] [CrossRef]
Phase | Lattice Parameters (Å) | Atomic Coordinates | Occupancy | Biso | R Factors | ||
---|---|---|---|---|---|---|---|
ZnCr2O4 | a = b = c | Ion | x = y = z | Wyckoff | Rp = 9.57%; Rwp = 7.15%, Rexp = 2.42, χ2 = 2.76 | ||
8.327(7) | Zn2+ | 0.125 | 8a | 1.0 | 0.72 | ||
Cr3+ | 0.500 | 16d | 1.0 | 0.45 | |||
O2− | 0.259(8) | 32e | 1.0 | 0.79 |
Element | (500 °C) wt% | (700 °C) wt% | (800 °C) wt% | (900 °C) wt% |
---|---|---|---|---|
Zn | 3.1 | 10.3 | 2.0 | 3.5 |
Cr | 4.0 | 14.7 | 2.8 | 5.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mykhailovych, V.; Caruntu, G.; Graur, A.; Mykhailovych, M.; Fochuk, P.; Fodchuk, I.; Rotaru, G.-M.; Rotaru, A. Fabrication and Characterization of Dielectric ZnCr2O4 Nanopowders and Thin Films for Parallel-Plate Capacitor Applications. Micromachines 2023, 14, 1759. https://doi.org/10.3390/mi14091759
Mykhailovych V, Caruntu G, Graur A, Mykhailovych M, Fochuk P, Fodchuk I, Rotaru G-M, Rotaru A. Fabrication and Characterization of Dielectric ZnCr2O4 Nanopowders and Thin Films for Parallel-Plate Capacitor Applications. Micromachines. 2023; 14(9):1759. https://doi.org/10.3390/mi14091759
Chicago/Turabian StyleMykhailovych, Vasyl, Gabriel Caruntu, Adrian Graur, Mariia Mykhailovych, Petro Fochuk, Igor Fodchuk, Gelu-Marius Rotaru, and Aurelian Rotaru. 2023. "Fabrication and Characterization of Dielectric ZnCr2O4 Nanopowders and Thin Films for Parallel-Plate Capacitor Applications" Micromachines 14, no. 9: 1759. https://doi.org/10.3390/mi14091759
APA StyleMykhailovych, V., Caruntu, G., Graur, A., Mykhailovych, M., Fochuk, P., Fodchuk, I., Rotaru, G. -M., & Rotaru, A. (2023). Fabrication and Characterization of Dielectric ZnCr2O4 Nanopowders and Thin Films for Parallel-Plate Capacitor Applications. Micromachines, 14(9), 1759. https://doi.org/10.3390/mi14091759