Enhancing Electrochemical Non-Enzymatic Dopamine Sensing Based on Bimetallic Nickel/Cobalt Phosphide Nanosheets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of Nickel/Cobalt Phosphide Nanosheets (Ni-Co-P NSs)
2.3. Fabrication of Ni-Co-P NSs Electrode
2.4. Characterizations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gaskill, P.J.; Khoshbouei, H. Dopamine and norepinephrine are embracing their immune side and so should we. Curr. Opin. Neurobiol. 2022, 77, 102626. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.S.; Lee, J.; Mizumori, S.J. Effects of prefrontal cortical inactivation on neural activity in the ventral tegmental area. J. Neurosci. 2013, 33, 8159–8171. [Google Scholar] [CrossRef] [PubMed]
- Douma, E.H.; de Kloet, E.R. Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci. Biobehav. Rev. 2020, 108, 48–77. [Google Scholar] [CrossRef] [PubMed]
- Surmeier, D.J.; Guzman, J.N.; Sanchez-Padilla, J.; Schumacker, P.T. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience 2011, 198, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Wegrzynowicz, M.; Bar-On, D.; Calo’, L.; Anichtchik, O.; Iovino, M.; Xia, J.; Ryazanov, S.; Leonov, A.; Giese, A.; Dalley, J.W. Depopulation of dense α-synuclein aggregates is associated with rescue of dopamine neuron dysfunction and death in a new Parkinson’s disease model. Acta Neuropathol. 2019, 138, 575–595. [Google Scholar] [CrossRef]
- Ayano, G. Dopamine: Receptors, functions, synthesis, pathways, locations and mental disorders: Review of literatures. J. Ment. Disord. Treat. 2016, 2, 2. [Google Scholar] [CrossRef]
- Blum, T.; Moreno-Pérez, A.; Pyrski, M.; Bufe, B.; Arifovic, A.; Weissgerber, P.; Freichel, M.; Zufall, F.; Leinders-Zufall, T. Trpc5 deficiency causes hypoprolactinemia and altered function of oscillatory dopamine neurons in the arcuate nucleus. Proc. Natl. Acad. Sci. USA 2019, 116, 15236–15243. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Z.; Wang, Z. A simple dopamine detection method based on fluorescence analysis and dopamine polymerization. Microchem. J. 2019, 145, 55–58. [Google Scholar] [CrossRef]
- Liu, C.; Gomez, F.A.; Miao, Y.; Cui, P.; Lee, W. A colorimetric assay system for dopamine using microfluidic paper-based analytical devices. Talanta 2019, 194, 171–176. [Google Scholar] [CrossRef]
- Yuan, D.; Chen, S.; Yuan, R.; Zhang, J.; Liu, X. An ECL sensor for dopamine using reduced graphene oxide/multiwall carbon nanotubes/gold nanoparticles. Sens. Actuators B Chem. 2014, 191, 415–420. [Google Scholar] [CrossRef]
- Kovac, A.; Somikova, Z.; Zilka, N.; Novak, M. Liquid chromatography–tandem mass spectrometry method for determination of panel of neurotransmitters in cerebrospinal fluid from the rat model for tauopathy. Talanta 2014, 119, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Jang, B.; Park, J.; Mun, H.-J.; Cho, H.-B.; Choa, Y.-H. In situ synthesis of a Bi2Te3-nanosheet/reduced-graphene-oxide nanocomposite for non-enzymatic electrochemical dopamine sensing. Nanomaterials 2022, 12, 2009. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wei, Z.; Wang, Y.; Ding, Y.; Jiang, L.; Fu, X.; Zhang, Y.; Sun, J.; Zhu, W.; Wang, J. Surface oxygen functionalization of carbon cloth toward enhanced electrochemical dopamine sensing. ACS Sustain. Chem. Eng. 2021, 9, 16063–16072. [Google Scholar] [CrossRef]
- Wang, S.; Guo, P.; Ma, G.; Wei, J.; Wang, Z.; Cui, L.; Sun, L.; Wang, A. Three-dimensional hierarchical mesoporous carbon for regenerative electrochemical dopamine sensor. Electrochim. Acta 2020, 360, 137016. [Google Scholar] [CrossRef]
- Xie, F.; Yang, M.; Jiang, M.; Huang, X.-J.; Liu, W.-Q.; Xie, P.-H. Carbon-based nanomaterials–a promising electrochemical sensor toward persistent toxic substance. TrAC Trends Anal. Chem. 2019, 119, 115624. [Google Scholar] [CrossRef]
- Ahammad, A.S.; Akter, T.; Al Mamun, A.; Islam, T.; Hasan, M.M.; Mamun, M.; Faraezi, S.; Monira, F.; Saha, J.K. Cost-effective electrochemical sensor based on carbon nanotube modified-pencil electrode for the simultaneous determination of hydroquinone and catechol. J. Electrochem. Soc. 2018, 165, B390. [Google Scholar] [CrossRef]
- Abbas, W.; Liu, Q.; Akhtar, N.; Ahmad, J.; Mazhar, M.E.; Li, T.; Zada, I.; Yao, L.; Naz, R.; Imtiaz, M. Electrochemical determination of urinary dopamine from neuroblastoma patients based on Cu nanoplates encapsulated by alginate-derived carbon. J. Electroanal. Chem. 2019, 853, 113560. [Google Scholar] [CrossRef]
- Tootoonchi, A.; Davarani, S.S.H.; Sedghi, R.; Shaabani, A.; Moazami, H.R. A non-enzymatic biosensor based on Pd decorated reduced graphene oxide poly (2-anilinoethanol) nanocomposite and its application for the determination of dopamine. J. Electrochem. Soc. 2018, 165, B150. [Google Scholar] [CrossRef]
- Sundar, S.; Venkatachalam, G.; Kwon, S.J. Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials 2018, 8, 823. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Yan, L.; Ding, Y.; Wang, X.; Liu, X.; Li, L.; Ju, J.; Zhan, T. Prussian Blue Analogue-Derived Iron Sulfide–Cobalt Sulfide Nanoparticle-Decorated Hollow Nitrogen-Doped Carbon Nanocubes for the Selective Electrochemical Detection of Dopamine. ACS Sustain. Chem. Eng. 2022, 10, 17230–17240. [Google Scholar] [CrossRef]
- Haldorai, Y.; Vilian, A.E.; Rethinasabapathy, M.; Huh, Y.S.; Han, Y.-K. Electrochemical determination of dopamine using a glassy carbon electrode modified with TiN-reduced graphene oxide nanocomposite. Sens. Actuators B Chem. 2017, 247, 61–69. [Google Scholar] [CrossRef]
- Wei, M.; Lu, W.; Zhu, M.; Zhang, R.; Hu, W.; Cao, X.; Jia, J.; Wu, H. Highly sensitive and selective dopamine sensor uses three-dimensional cobalt phosphide nanowire array. J. Mater. Sci. 2021, 56, 6401–6410. [Google Scholar] [CrossRef]
- Xiao, L.; Zheng, S.; Yang, K.; Duan, J.; Jiang, J. The construction of CoP nanoparticles coated with carbon layers derived from core-shell bimetallic MOF for electrochemical detection of dopamine. Microchem. J. 2021, 168, 106432. [Google Scholar] [CrossRef]
- Pu, Z.; Liu, T.; Amiinu, I.S.; Cheng, R.; Wang, P.; Zhang, C.; Ji, P.; Hu, W.; Liu, J.; Mu, S. Transition-metal phosphides: Activity origin, energy-related electrocatalysis applications, and synthetic strategies. Adv. Funct. Mater. 2020, 30, 2004009. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, L.; Liu, H.; Wang, H. Element-specific restructuring of anion-and cation-substituted cobalt phosphide nanoparticles under electrochemical water-splitting conditions. ACS Catal. 2019, 9, 2956–2961. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Matras-Postolek, K.; Yang, P. Ni2P nanosheets modified N-doped hollow carbon spheres towards enhanced supercapacitor performance. J. Alloys Compd. 2021, 854, 157111. [Google Scholar] [CrossRef]
- Gong, S.; Hou, M.; Niu, Y.; Teng, X.; Liu, X.; Xu, M.; Xu, C.; Au, V.K.-M.; Chen, Z. Molybdenum phosphide coupled with highly dispersed nickel confined in porous carbon nanofibers for enhanced photocatalytic CO2 reduction. Chem. Eng. J. 2022, 427, 131717. [Google Scholar] [CrossRef]
- Zhu, J.; He, Q.; Liu, Y.; Key, J.; Nie, S.; Wu, M.; Shen, P.K. Three-dimensional, hetero-structured, Cu3P@C nanosheets with excellent cycling stability as Na-ion battery anode material. J. Mater. Chem. A 2019, 7, 16999–17007. [Google Scholar] [CrossRef]
- Das, J.K.; Samantara, A.K.; Satyarthy, S.; Rout, C.S.; Behera, J. Three-dimensional NiCoP hollow spheres: An efficient electrode material for hydrogen evolution reaction and supercapacitor applications. RSC Adv. 2020, 10, 4650–4656. [Google Scholar] [CrossRef]
- Sivakumar, P.; Jung, M.G.; Raj, C.J.; Rana, H.H.; Park, H.S. 1D interconnected porous binary transition metal phosphide nanowires for high performance hybrid supercapacitors. Int. J. Energy Res. 2021, 45, 17005–17014. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Z.; Zhang, Q.; Peng, W.; Li, Y.; Zhang, F.; Fan, X. A MOF derived hierarchically porous 3D N-CoPx/Ni2P electrode for accelerating hydrogen evolution at high current densities. Chin. J. Catal. 2022, 43, 1176–1183. [Google Scholar] [CrossRef]
- Shu, Y.; Li, B.; Chen, J.; Xu, Q.; Pang, H.; Hu, X. Facile synthesis of ultrathin nickel–cobalt phosphate 2D nanosheets with enhanced electrocatalytic activity for glucose oxidation. ACS Appl. Mater. Interfaces 2018, 10, 2360–2367. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, W.; Xu, H.; Liu, S.; Huang, W.; Zhao, Q. Fabrication of ultra-thin 2D covalent organic framework nanosheets and their application in functional electronic devices. Coord. Chem. Rev. 2021, 429, 213616. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, A.; Wang, X.; Tian, C.; An, R.; Fu, H. Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors. J. Mater. Chem. A 2018, 6, 17905–17914. [Google Scholar] [CrossRef]
- Feng, J.; Li, Q.; Cai, J.; Yang, T.; Chen, J.; Hou, X. Electrochemical detection mechanism of dopamine and uric acid on titanium nitride-reduced graphene oxide composite with and without ascorbic acid. Sens. Actuators B Chem. 2019, 298, 126872. [Google Scholar] [CrossRef]
- Balkourani, G.; Brouzgou, A.; Vecchio, C.L.; Aricò, A.; Baglio, V.; Tsiakaras, P. Selective electro-oxidation of dopamine on Co or Fe supported onto N-doped ketjenblack. Electrochim. Acta 2022, 409, 139943. [Google Scholar] [CrossRef]
- Xiang, L.; Lin, Y.; Yu, P.; Su, L.; Mao, L. Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors. Electrochim. Acta 2007, 52, 4144–4152. [Google Scholar] [CrossRef]
- Deng, Z.-P.; Sun, Y.; Wang, Y.-C.; Gao, J.-D. A NiFe alloy reduced on graphene oxide for electrochemical nonenzymatic glucose sensing. Sensors 2018, 18, 3972. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Y.; Hu, J.; Zheng, S.; Wang, X.; Zhou, H.; Jin, B. Co-based metal-organic framework nanopinnas composite doped with Ag nanoparticles: A sensitive electrochemical sensing platform for simultaneous determination of dopamine and acetaminophen. Microchem. J. 2020, 155, 104759. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, J.; Zheng, J. A sensitive dopamine electrochemical sensor based on hollow zeolitic imidazolate framework. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125617. [Google Scholar] [CrossRef]
- Grace, A.A.; Dharuman, V.; Hahn, J.H. GdTiO3 perovskite modified graphene composite for electrochemical simultaneous sensing of Acetaminophen and Dopamine. J. Alloys Compd. 2021, 886, 161256. [Google Scholar] [CrossRef]
- Selvolini, G.; Lazzarini, C.; Marrazza, G. Electrochemical nanocomposite single-use sensor for dopamine detection. Sensors 2019, 19, 3097. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.-T.; Cai, X.-Q.; Luo, Y.-H.; Zhu, K.; Zhang, Q.-Y.; Hu, T.-T.; Sang, T.-T.; Zhang, C.-Y.; Zhang, D.-E. Facile synthesis of nickel@ carbon nanorod composite for simultaneously electrochemical detection of dopamine and uric acid. Microchem. J. 2021, 171, 106823. [Google Scholar] [CrossRef]
- Niu, B.; Liu, M.; Li, X.; Guo, H.; Chen, Z. Vein-Like Ni-BTC@ Ni3S4 with Sulfur Vacancy and Ni3+ Fabricated In Situ Etching Vulcanization Strategy for an Electrochemical Sensor of Dopamine. ACS Appl. Mater. Interfaces 2023, 15, 13319–13331. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Zhang, L.; Cao, P.; Wang, N.; Lin, M. Electrochemical sensing of dopamine using a Ni-based metal-organic framework modified electrode. Ionics 2021, 27, 1339–1345. [Google Scholar] [CrossRef]
- Amiri, M.; Akbari Javar, H.; Mahmoudi-Moghaddam, H. Facile green synthesis of NiO/NiCo2O4 nanocomposite as an efficient electrochemical platform for determination of dopamine. Electroanalysis 2021, 33, 1205–1214. [Google Scholar] [CrossRef]
- Sahoo, R.C.; Moolayadukkam, S.; Thomas, S.; Zaeem, M.A.; Matte, H.R. Solution processed Ni2Co layered double hydroxides for high performance electrochemical sensors. Appl. Surf. Sci. 2021, 541, 148270. [Google Scholar] [CrossRef]
- Wang, L.; Yang, R.; Qu, L.; Harrington, P.D.B. Electrostatic repulsion strategy for high-sensitive and selective determination of dopamine in the presence of uric acid and ascorbic acid. Talanta 2020, 210, 120626. [Google Scholar] [CrossRef]
- Oh, J.-W.; Yoon, Y.W.; Heo, J.; Yu, J.; Kim, H.; Kim, T.H. Electrochemical detection of nanomolar dopamine in the presence of neurophysiological concentration of ascorbic acid and uric acid using charge-coated carbon nanotubes via facile and green preparation. Talanta 2016, 147, 453–459. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Kang, P.; Wang, S.-Q.; Liu, Z.-G.; Li, Y.-X.; Guo, Z. Ag nanoparticles anchored onto porous CuO nanobelts for the ultrasensitive electrochemical detection of dopamine in human serum. Sens. Actuators B Chem. 2021, 327, 128878. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, J.; Liu, J.; Xu, H.; Dong, B.; Sun, X.; Zhang, T.; Xu, S.; Xu, L.; Bai, X. Label-free electrochemical immunosensor based on conductive Ag contained EMT-style nano-zeolites and the application for α-fetoprotein detection. Sens. Actuators B Chem. 2018, 255, 2919–2926. [Google Scholar] [CrossRef]
Electrode Materials | Linear Range (μM) | Sensitivity (μA μM−1 cm−2) | Detection Limit (μM) | Reference |
---|---|---|---|---|
Ag-ZIF-67p/GCE | 0.10~100 | 1.469 | 0.050 | [39] |
Ni@CNRs/GCE | 0.50~30 | 0.379 | 0.056 | [43] |
Ni-BTC@Ni3S4/CPE | 0.05~750 | 0.560 | 0.016 | [44] |
Ni-MOF/GCE | 0.20~100 | 0.285 | 0.060 | [45] |
NiO/NiCo2O4/CPE | 0.10~100 | — | 0.040 | [46] |
Ni2Co-LDH/GCE | 1.30~420 | 0.148 | 1.250 | [47] |
Ni-Co-P NSs/Nafion/GCE | 0.3~50 | 2.033 | 0.016 | This Work |
Added Concentration (μM) | Found Concentration (μM) | Recovery (%) |
---|---|---|
1 | 0.966 | 96.6 |
1 | 0.943 | 94.3 |
1 | 0.938 | 93.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.-Y.; Tsai, Z.-Y.; Chang, H.-W.; Tsai, Y.-C. Enhancing Electrochemical Non-Enzymatic Dopamine Sensing Based on Bimetallic Nickel/Cobalt Phosphide Nanosheets. Micromachines 2024, 15, 105. https://doi.org/10.3390/mi15010105
Wang Z-Y, Tsai Z-Y, Chang H-W, Tsai Y-C. Enhancing Electrochemical Non-Enzymatic Dopamine Sensing Based on Bimetallic Nickel/Cobalt Phosphide Nanosheets. Micromachines. 2024; 15(1):105. https://doi.org/10.3390/mi15010105
Chicago/Turabian StyleWang, Zhi-Yuan, Zong-Ying Tsai, Han-Wei Chang, and Yu-Chen Tsai. 2024. "Enhancing Electrochemical Non-Enzymatic Dopamine Sensing Based on Bimetallic Nickel/Cobalt Phosphide Nanosheets" Micromachines 15, no. 1: 105. https://doi.org/10.3390/mi15010105
APA StyleWang, Z. -Y., Tsai, Z. -Y., Chang, H. -W., & Tsai, Y. -C. (2024). Enhancing Electrochemical Non-Enzymatic Dopamine Sensing Based on Bimetallic Nickel/Cobalt Phosphide Nanosheets. Micromachines, 15(1), 105. https://doi.org/10.3390/mi15010105