Lightweight and High-Stiffness Metal Optical Systems Based on Additive Manufacturing
Abstract
:1. Introduction
2. Topology Optimization Design of the Metal Mirror
3. Lightweight and High-Stiffness Metal Optical System
3.1. Index Requirements
3.2. Optical System Design
3.3. Optical Mechanical Structure Design
3.3.1. Primary Mirror Assembly Design
3.3.2. Secondary Mirror Assembly Design
3.3.3. Shading Baffle Design
3.3.4. System Mode and Static Analysis
3.3.5. Weight Estimation
4. Prototype Development
4.1. Additive Manufacturing
4.2. Optical Processing
4.3. Optical Mechanical Assembly
4.4. Performance Testing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhen, Z.; Wang, Y.R.; Ou, W.; Zhou, J.; Li, A. A novel technology on infrared multi-band low-background detection. Infrared Laser Eng. 2020, 49, 153–157. [Google Scholar]
- Fan, J.X.; Hou, W.T. Development and thinking of precision homing terminal guidance technology for air and missile defense. Air Space Def. 2020, 3, 31–37. [Google Scholar]
- Vukobratovich, D.; Schaefer, J.P. Large stable aluminum optics for aerospace applications. Proc. SPIE 2011, 8125, 81250T.1–81250T.13. [Google Scholar]
- Oeggenborg, K.J.; Vincer, T.; Lesiak, S.; Salig, R. Super-polished aluminum mirrors through the application of chemical mechanical polishing techniques. Curr. Dev. Lens Des. Opt. Eng. VII Int. Soc. Opt. Photonics 2006, 62880, P.62880L.1–P.62880L.9. [Google Scholar]
- Xie, Y.; Mao, X.; Li, J.P.; Wang, F.B.; Wang, P.; Gao, R.; Li, X.; Ren, S.J.; Xu, Z.C.; Dong, R.G. Optical design and fabrication of an all-aluminum unobscured two-mirror freeform imaging telescope. Appl. Opt. 2020, 59, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.N.; Ding, Y.L.; Xu, Y.S.; Liu, W.Y. Development of additively manufacturing metal mirrors. Chin. Opt. 2020, 13, 75–86. [Google Scholar]
- Zhang, K.; Qu, H.M.; Guan, H.J.; Zhang, J.Z.; Zhang, X.; Xie, X.L.; Yan, L.; Wang, C. Design and Fabrication Technology of Metal Mirrors Based on Additive Manufacturing: A Review. Appl. Sci. 2021, 11, 10630. [Google Scholar] [CrossRef]
- Woodard, K.S.; Myrick, B.H. Progress on high-performance rapid prototype aluminum mirrors. Proc. SPIE 2017, 10181, 101810T.1–101810T.6. [Google Scholar]
- Woodard, K.S.; Comstock, L.E.; Wamboldt, L.; Sutherland, J.S. Optimum selection of high performance mirror substrates for diamond finishing. Proc. SPIE 2016, 9822, 98220C.1–98220C.6. [Google Scholar]
- Scheiding, S.; Gebhardt, A.; Damm, C.; Scheiding, M.; Risse, S. Method for manufacturing a mirror comprising at least one cavity and optical mirror. U.S. Patent 9599756B2, 4 September 2014. [Google Scholar]
- Hilpert, E.; Hartung, J.; Risse, S.; Eberhardt, R.; Tunnemian, A. Precision manufacturing of a lightweight mirror body made by selective laser melting. Precis. Eng. 2018, 53, 310–317. [Google Scholar] [CrossRef]
- Hilpert, E.; Hartung, J.; Vonlukowicz, H.; Herffurth, T.; Heidler, N. Design, additive manufacturing, processing, and characterization of metal mirror made of aluminum silicon alloy for space applications. Opt. Eng. 2019, 58, 092613.1–092613.9. [Google Scholar] [CrossRef]
- Atkins, C.; Feldman, C.; Brooks, D.; Watson, S.; Cochrane, W.; Rouler, M.; Hugot, E.; Beardsley, M.; Harris, M.; Spindloe, C.; et al. Topological design of lightweight additively manufactured mirrors for space. Proc. Adv. Opt. Mech. Technol. Telesc. Instrum. III 2018, 10706, 10706.1–10706.17. [Google Scholar]
Parameters | Index Requirements |
---|---|
Waveband | 8–10 μm |
F/# | 2 |
Focal length | 110 mm |
Field of view | 4° × 4° |
Cold stop efficiency | 100% |
Weight of primary and secondary mirror assembly | Less than 100 g |
Parameters | Index Data |
---|---|
Resolution of resolution | 256 × 256 |
Pixel size | 30 μm × 30 μm |
F/# | 2 |
Name | Weight (g) |
---|---|
Primary mirror assembly | 40.6 |
Secondary mirror assembly | 16.8 |
Shading baffle | 32.2 |
Screws | 1.50 |
Total | 91.1 |
Name | Actual Weight (g) |
---|---|
Primary mirror assembly | 44.64 |
Secondary mirror assembly | 16.8 |
Shading baffle | 33.07 |
Screws | 1.53 |
Total | 96.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.; Yan, L.; Tan, S.; Liu, Y.; Wang, L. Lightweight and High-Stiffness Metal Optical Systems Based on Additive Manufacturing. Micromachines 2024, 15, 128. https://doi.org/10.3390/mi15010128
Fu Q, Yan L, Tan S, Liu Y, Wang L. Lightweight and High-Stiffness Metal Optical Systems Based on Additive Manufacturing. Micromachines. 2024; 15(1):128. https://doi.org/10.3390/mi15010128
Chicago/Turabian StyleFu, Qiang, Lei Yan, Shuanglong Tan, Yang Liu, and Lingjie Wang. 2024. "Lightweight and High-Stiffness Metal Optical Systems Based on Additive Manufacturing" Micromachines 15, no. 1: 128. https://doi.org/10.3390/mi15010128
APA StyleFu, Q., Yan, L., Tan, S., Liu, Y., & Wang, L. (2024). Lightweight and High-Stiffness Metal Optical Systems Based on Additive Manufacturing. Micromachines, 15(1), 128. https://doi.org/10.3390/mi15010128