Micro-Ring Resonator-Based Tunable Vortex Beam Emitter
Abstract
:1. Introduction
2. The Structure of the MRR-Based Vortex Beam Emitter
3. Optimization Methodology and Simulation
- (1)
- Optimization of the distance between the bus waveguide and the ring (gap) (Figure 2). From Figure 2, it is evident that the optimal gap value was 150 nm. Further reduction of the gap would entail technological difficulties during manufacturing. However, the condition for critical coupling, which ranges from 1500 nm to 1600 nm, is not met.
- (2)
- Optimizing the bus waveguide width to match the phases in the two coupled waveguides (here, the ring waveguide width is constant and equals 400 nm) (Figure 3). We optimized the width of the bus waveguide to match the phases in two coupled waveguides (from the perspective of equal refractive indices of the ring waveguide with etched holes and the bus waveguide, while the width of the ring waveguide remains constant at 400 nm).
4. Simulation Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perspectives on the Orbital Angular Momentum of Light—IOPscience. Available online: https://iopscience.iop.org/article/10.1088/2040-8986/aca109 (accessed on 24 October 2023).
- Willner, A.E.; Ren, Y.; Xie, G.; Yan, Y.; Li, L.; Zhao, Z.; Wang, J.; Tur, M.; Molisch, A.F.; Ashrafi, S. Recent Advances in High-Capacity Free-Space Optical and Radio-Frequency Communications Using Orbital Angular Momentum Multiplexing. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2017, 375, 20150439. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Kazanskiy, N.L.; Karpeev, S.V.; Butt, M.A. Bessel Beam: Significance and Applications—A Progressive Review. Micromachines 2020, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Perspectives on Advances in High-Capacity, Free-Space Communications Using Multiplexing of Orbital-Angular-Momentum Beams|APL Photonics|AIP Publishing. Available online: https://pubs.aip.org/aip/app/article/6/3/030901/831411/Perspectives-on-advances-in-high-capacity-free (accessed on 24 October 2023).
- OAM Beam Generation in Space and Its Applications: A Review—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0143816621003924 (accessed on 24 October 2023).
- Computational Imaging with Low-Order OAM Beams at Microwave Frequencies|Scientific Reports. Available online: https://www.nature.com/articles/s41598-020-68586-y (accessed on 24 October 2023).
- Huang, Z.; Wang, P.; Liu, J.; Xiong, W.; He, Y.; Xiao, J.; Ye, H.; Li, Y.; Chen, S.; Fan, D. All-Optical Signal Processing of Vortex Beams with Diffractive Deep Neural Networks. Phys. Rev. Appl. 2021, 15, 014037. Available online: https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.15.014037 (accessed on 24 October 2023). [CrossRef]
- Fatkhiev, D.M.; Butt, M.A.; Grakhova, E.P.; Kutluyarov, R.V.; Stepanov, I.V.; Kazanskiy, N.L.; Khonina, S.N.; Lyubopytov, V.S.; Sultanov, A.K. Recent Advances in Generation and Detection of Orbital Angular Momentum Optical Beams—A Review. Sensors 2021, 21, 4988. [Google Scholar] [CrossRef]
- Dynamic Millimeter-Wave OAM Beam Generation through Programmable Metasurface. Available online: https://www.degruyter.com/document/doi/10.1515/nanoph-2021-0790/html (accessed on 24 October 2023).
- Weng, Y.; Pan, Z. Orbital Angular Momentum Based Sensing and Their Applications: A Review. J. Light. Technol. 2022, 41, 2007–2016. [Google Scholar] [CrossRef]
- Kutluyarov, R.V.; Fatkhiev, D.M.; Stepanov, I.V.; Grakhova, E.P.; Lyubopytov, V.S.; Sultanov, A.K. Design and Modeling of a Photonic Integrated Device for Optical Vortex Generation in a Silicon Waveguide. Comput. Opt. 2021, 45, 324–330. [Google Scholar] [CrossRef]
- Fatkhiev, D.M.; Lyubopytov, V.S.; Kutluyarov, R.V.; Grakhova, E.P.; Sultanov, A.K. A Grating Coupler Design for Optical Vortex Mode Generation in Rectangular Waveguides. IEEE Photonics J. 2021, 13, 6600108. [Google Scholar] [CrossRef]
- Zhang, Z.-W.; Du, C.-H.; Zhu, J.-F.; Han, F.-Y.; Li, F.-H.; Gao, Z.-C.; Zhang, L.; Cross, A.W.; Liu, P.-K. A Terahertz Vortex Beam Emitter With Tunable Topological Charge and Harmonic Excitation. J. Light. Technol. 2021, 39, 6231–6238. [Google Scholar] [CrossRef]
- Slussarenko, S.; Karimi, E.; Piccirillo, B.; Marrucci, L.; Santamato, E. Efficient Generation and Control of Different-Order Orbital Angular Momentum States for Communication Links. J. Opt. Soc. Am. A 2011, 28, 61. [Google Scholar] [CrossRef]
- Bozinovic, N.; Yue, Y.; Ren, Y.; Tur, M.; Kristensen, P.; Huang, H.; Willner, A.E.; Ramachandran, S. Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers. Science 2013, 340, 1545–1548. [Google Scholar] [CrossRef]
- Datta, A.; Saha, A. Realization of a Highly Sensitive Multimode Interference Effect-Based Fiber-Optic Temperature Sensor by Radiating with a Vortex Beam. Optik 2020, 218, 165006. [Google Scholar] [CrossRef]
- Allen, L.; Beijersbergen, M.W.; Spreeuw, R.J.C.; Woerdman, J.P. Orbital Angular Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes. Phys. Rev. A 1992, 45, 8185. Available online: https://journals.aps.org/pra/abstract/10.1103/PhysRevA.45.8185 (accessed on 24 October 2023). [CrossRef] [PubMed]
- Beijersbergen, M.W.; Coerwinkel, R.P.C.; Kristensen, M.; Woerdman, J.P. Helical-Wavefront Laser Beams Produced with a Spiral Phaseplate. Opt. Commun. 1994, 112, 321–327. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.-Y.; Fazal, I.M.; Ahmed, N.; Yan, Y.; Huang, H.; Ren, Y.; Yue, Y.; Dolinar, S.; Tur, M.; et al. Terabit Free-Space Data Transmission Employing Orbital Angular Momentum Multiplexing. Nat. Photonics 2012, 6, 488–496. [Google Scholar] [CrossRef]
- Leach, J.; Padgett, M.J.; Barnett, S.M.; Franke-Arnold, S.; Courtial, J. Measuring the Orbital Angular Momentum of a Single Photon. Phys. Rev. Lett. 2002, 88, 257901. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Scott, R.P.; Djordjevic, S.S.; Fontaine, N.K.; Geisler, D.J.; Cai, X.; Yoo, S.J.B. Demonstration of Free Space Coherent Optical Communication Using Integrated Silicon Photonic Orbital Angular Momentum Devices. Opt. Express 2012, 20, 9396–9402. [Google Scholar] [CrossRef] [PubMed]
- Fontaine, N.K.; Doerr, C.R.; Buhl, L.L. Efficient Multiplexing and Demultiplexing of Free-Space Orbital Angular Momentum Using Photonic Integrated Circuits. In Proceedings of the Optical Fiber Communication Conference (2012), Paper OTu1I.2, Los Angeles, CA, USA, 4 March 2012. [Google Scholar]
- Sun, J.; Timurdogan, E.; Yaacobi, A.; Hosseini, E.S.; Watts, M.R. Large-Scale Nanophotonic Phased Array. Nature 2013, 493, 195–199. [Google Scholar] [CrossRef]
- Cai, X.; Wang, J.; Strain, M.J.; Johnson-Morris, B.; Zhu, J.; Sorel, M.; O’Brien, J.L.; Thompson, M.G.; Yu, S. Integrated Compact Optical Vortex Beam Emitters. Science 2012, 338, 363–366. [Google Scholar] [CrossRef]
- Stepanov, I.V.; Fatkhiev, D.M.; Lyubopytov, V.S.; Kutluyarov, R.V.; Grakhova, E.P.; Neumann, N.; Khonina, S.N.; Sultanov, A.K. Wavelength-Tunable Vortex Beam Emitter Based on Silicon Micro-Ring with PN Depletion Diode. Sensors 2022, 22, 929. [Google Scholar] [CrossRef]
- Li, R.; Feng, X.; Zhang, D.; Cui, K.; Liu, F.; Huang, Y. Radially Polarized Orbital Angular Momentum Beam Emitter Based on Shallow-Ridge Silicon Microring Cavity. IEEE Photonics J. 2014, 6, 2200710. [Google Scholar] [CrossRef]
- Rui, G.; Gu, B.; Cui, Y.; Zhan, Q. Detection of Orbital Angular Momentum Using a Photonic Integrated Circuit. Sci. Rep. 2016, 6, 28262. [Google Scholar] [CrossRef] [PubMed]
- Khonina, S.N.; Voronkov, G.S.; Grakhova, E.P.; Kazanskiy, N.L.; Kutluyarov, R.V.; Butt, M.A. Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications. Coatings 2023, 13, 549. [Google Scholar] [CrossRef]
- Simpson, R.E.; Cao, T. Phase Change Material Photonics. arXiv 2020, arXiv:2006.14441. [Google Scholar]
- Lawson, D.; Hewak, D.W.; Muskens, O.L.; Zeimpekis, I. Time-Resolved Reversible Optical Switching of the Ultralow-Loss Phase Change Material Sb2Se3. J. Opt. 2022, 24, 064013. [Google Scholar] [CrossRef]
- Gong, Z.; Yang, F.; Wang, L.; Chen, R.; Wu, J.; Grigoropoulos, C.P.; Yao, J. Phase Change Materials in Photonic Devices. J. Appl. Phys. 2021, 129, 030902. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Lawson, D.; Hewak, D.W.; Muskens, O.L. A New Family of Ultralow Loss Reversible Phase-Change Materials for Photonic Integrated Circuits: Sb2S3 and Sb2Se3. Adv. Funct. Mater. 2020, 30, 2002447. [Google Scholar] [CrossRef]
- Chrostowski, L.; Hochberg, M. Silicon Photonics Design: From Devices to Systems, 1st ed.; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-1-107-08545-9. [Google Scholar]
- Microring Resonators for Vortex Beam Emission and Their All-Optical Wavelength Tuning. Available online: https://eprints.soton.ac.uk/457484/1/Hailong_Pi_PhD_SEMS_group_25_March_2022.pdf (accessed on 24 October 2023).
- Milvich, J.; Kohler, D.; Freude, W.; Koos, C. Integrated Phase-Sensitive Photonic Sensors: A System Design Tutorial. Adv. Opt. Photonics 2021, 13, 584. [Google Scholar] [CrossRef]
- Voronkov, G.; Zakoyan, A.; Ivanov, V.; Iraev, D.; Stepanov, I.; Yuldashev, R.; Grakhova, E.; Lyubopytov, V.; Morozov, O.; Kutluyarov, R. Design and Modeling of a Fully Integrated Microring-Based Photonic Sensing System for Liquid Refractometry. Sensors 2022, 22, 9553. [Google Scholar] [CrossRef]
- Lu, Z.; Jhoja, J.; Klein, J.; Wang, X.; Liu, A.; Flueckiger, J.; Pond, J.; Chrostowski, L. Performance Prediction for Silicon Photonics Integrated Circuits with Layout-Dependent Correlated Manufacturing Variability. Opt. Express 2017, 25, 9712. [Google Scholar] [CrossRef]
- Voronkov, G.; Zakoyan, A.; Ivanov, V.; Voronkova, A.; Stepanov, I.; Grakhova, E.; Lyubopytov, V.; Kutluyarov, R. Fully Integrated Optical Sensor System with Intensity Interrogation. Inf. Control Syst. 2022, 20–30. [Google Scholar] [CrossRef]
- Zhang, F.; Xie, X.; Pu, M.; Guo, Y.; Ma, X.; Li, X.; Luo, J.; He, Q.; Yu, H.; Luo, X. Multistate Switching of Photonic Angular Momentum Coupling in Phase-Change Metadevices. Adv. Mater. 2020, 32, 1908194. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Lu, Y.; Cai, L. High-Performance On-Chip Racetrack Resonator Based on GSST-Slot for In-Memory Computing. Nanomaterials 2023, 13, 837. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, L.; Xu, J.; Lu, L.; Chen, J.; Rahman, B.M.A. Silicon Microring Resonators Tuned with GST Phase Change Material. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 26–29 October 2018; IEEE: Piscataway, NJ, USA; pp. 1–3. [Google Scholar]
- Suprano, A.; Zia, D.; Polino, E.; Giordani, T.; Innocenti, L.; Paternostro, M.; Ferraro, A.; Spagnolo, N.; Sciarrino, F. Enhanced Detection Techniques of Orbital Angular Momentum States in the Classical and Quantum Regimes. New J. Phys. 2021, 23, 073014. [Google Scholar] [CrossRef]
- Zhou, Z.-Y.; Li, Y.; Ding, D.-S.; Zhang, W.; Shi, S.; Shi, B.-S.; Guo, G.-C. Orbital Angular Momentum Photonic Quantum Interface. Light Sci. Appl. 2016, 5, e16019. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Wang, X.; Yao, Z. Single Photon Orbital Angular Momentum Transfer Based on Information Processing Technology. J. Phys. Conf. Ser. 2020, 1574, 012117. [Google Scholar] [CrossRef]
- Lei, T.; Zhang, M.; Li, Y.; Jia, P.; Liu, G.N.; Xu, X.; Li, Z.; Min, C.; Lin, J.; Yu, C.; et al. Massive Individual Orbital Angular Momentum Channels for Multiplexing Enabled by Dammann Gratings. Light Sci. Appl. 2015, 4, e257. [Google Scholar] [CrossRef]
- Wang, F.-X.; Chen, W.; Li, Y.-P.; Zhang, G.-W.; Yin, Z.-Q.; Wang, S.; Guo, G.-C.; Han, Z.-F. Single-Path Sagnac Interferometer with Dove Prism for Orbital-Angular-Momentum Photon Manipulation. Opt. Express 2017, 25, 24946. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiao, X.; Midya, B.; Liu, K.; Sun, J.; Wu, T.; Liu, W.; Agarwal, R.; Jornet, J.M.; Longhi, S.; et al. Tunable Topological Charge Vortex Microlaser. Science 2020, 368, 760–763. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, X.; Xie, Z.; Min, C.; Fu, X.; Liu, Q.; Gong, M.; Yuan, X. Optical Vortices 30 Years on: OAM Manipulation from Topological Charge to Multiple Singularities. Light Sci. Appl. 2019, 8, 90. [Google Scholar] [CrossRef]
- Wen, D.; Crozier, K.B. Semiconductor Lasers with Integrated Metasurfaces for Direct Output Beam Modulation, Enabled by Innovative Fabrication Methods. Nanophotonics 2023, 12, 1443–1457. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Y.; Qu, G.; Fan, Y.; Dai, W.; Wang, Y.; Song, Q.; Han, J.; Xiao, S. Lead Halide Perovskite Vortex Microlasers. Nat. Commun. 2020, 11, 4862. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Huang, S.; Du, J.; Wang, C.; Leng, Y. Advances in Inorganic and Hybrid Perovskites for Miniaturized Lasers. Nanophotonics 2020, 9, 2251–2272. [Google Scholar] [CrossRef]
- Zhang, Q.; Shang, Q.; Su, R.; Do, T.T.H.; Xiong, Q. Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. Nano Lett. 2021, 21, 1903–1914. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Feng, J.; Han, S.; Xu, Z.; Mao, W.; Zhang, T.; Kim, J.S.; Roh, I.; Zhao, Y.; Kim, D.-H.; et al. Photonic van Der Waals Integration from 2D Materials to 3D Nanomembranes. Nat. Rev. Mater. 2023, 8, 498–517. [Google Scholar] [CrossRef]
- Meng, Y.; Zhong, H.; Xu, Z.; He, T.; Kim, J.S.; Han, S.; Kim, S.; Park, S.; Shen, Y.; Gong, M.; et al. Functionalizing Nanophotonic Structures with 2D van Der Waals Materials. Nanoscale Horiz. 2023, 8, 1345–1365. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Liu, Z.; Xie, Z.; Wang, R.; Qi, T.; Hu, F.; Kim, H.; Xiao, Q.; Fu, X.; Wu, Q.; et al. Versatile On-Chip Light Coupling and (de)Multiplexing from Arbitrary Polarizations to Controlled Waveguide Modes Using an Integrated Dielectric Metasurface. Photonics Res. 2020, 8, 564. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, Y.; Lu, L.; Ding, Y.; Cusano, A.; Fan, J.A.; Hu, Q.; Wang, K.; Xie, Z.; Liu, Z.; et al. Optical Meta-Waveguides for Integrated Photonics and Beyond. Light Sci. Appl. 2021, 10, 235. [Google Scholar] [CrossRef]
- Kurmendra; Kumar, R. RF Micro-Electro-Mechanical System (MEMS) Capacitive Switch Performance Parameters and Improvement Strategies. Microsyst. Technol. 2022, 28, 1765–1783. [Google Scholar] [CrossRef]
- Shen, J.; Song, W.; Ren, K.; Song, Z.; Zhou, P.; Zhu, M. Toward the Speed Limit of Phase-Change Memory. Adv. Mater. 2023, 35, 2208065. [Google Scholar] [CrossRef]
Name | Value |
---|---|
Ring radius | 5.5 μm |
Number of holes | 63 |
Hole depth | 70 nm |
Hole diameter | 150 nm |
Ring waveguide width | 400 nm |
Ring waveguide thickness (Si) | 220 nm |
Application thickness of PCM | 30 nm |
SiO2 thickness | 5 μm |
Substrate thickness (Si) | 2 μm |
Gap (nm) | Angle (°) | Width (nm) | Holes Depth (nm) | Wavelength (nm) | Radiation Output Power (a.u.) | (a.u./m2) | |
---|---|---|---|---|---|---|---|
Without | 100 | 20 | 340 | 70 | 1516.11 | 30.472 | 0.116 |
PCM | 1529.64 | 27.174 | 0.104 | ||||
1545.99 | 29.484 | 0.130 | |||||
1562.70 | 21.941 | 0.083 | |||||
1579.99 | 24.671 | 0.094 | |||||
a-PCM | 150 | 15 | 350 | 70 | 1517.07 | 22.23 | 0.101 |
1532.96 | 20.67 | 0.079 | |||||
1549.19 | 24.48 | 0.093 | |||||
1565.97 | 17.62 | 0.067 | |||||
1582.97 | 26.24 | 0.098 | |||||
c-PCM | 150 | 30 | 370 | 70 | 1521.49 | 30.07 | 0.115 |
1537.08 | 24.72 | 0.945 | |||||
1553.40 | 28.66 | 0.110 | |||||
1569.65 | 21.75 | 0.083 | |||||
1587.09 | 26.36 | 0.101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakirova, L.I.; Voronkov, G.S.; Lyubopytov, V.S.; Butt, M.A.; Khonina, S.N.; Stepanov, I.V.; Grakhova, E.P.; Kutluyarov, R.V. Micro-Ring Resonator-Based Tunable Vortex Beam Emitter. Micromachines 2024, 15, 34. https://doi.org/10.3390/mi15010034
Bakirova LI, Voronkov GS, Lyubopytov VS, Butt MA, Khonina SN, Stepanov IV, Grakhova EP, Kutluyarov RV. Micro-Ring Resonator-Based Tunable Vortex Beam Emitter. Micromachines. 2024; 15(1):34. https://doi.org/10.3390/mi15010034
Chicago/Turabian StyleBakirova, Liaisan I., Grigory S. Voronkov, Vladimir S. Lyubopytov, Muhammad A. Butt, Svetlana N. Khonina, Ivan V. Stepanov, Elizaveta P. Grakhova, and Ruslan V. Kutluyarov. 2024. "Micro-Ring Resonator-Based Tunable Vortex Beam Emitter" Micromachines 15, no. 1: 34. https://doi.org/10.3390/mi15010034
APA StyleBakirova, L. I., Voronkov, G. S., Lyubopytov, V. S., Butt, M. A., Khonina, S. N., Stepanov, I. V., Grakhova, E. P., & Kutluyarov, R. V. (2024). Micro-Ring Resonator-Based Tunable Vortex Beam Emitter. Micromachines, 15(1), 34. https://doi.org/10.3390/mi15010034