Cost-Effective Laboratory Matrix Projection Micro-Lithography System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction
2.2. Calibrations
2.3. Working with Photoresists
2.4. Software and Control Elements
2.5. Exposure Procedure
3. Results
- Lithography resolution for a single-frame exposure;
- Resolution that allows patterning 1 cm × 1 cm square without visible field stitching problems;
- Patterning speed at the best resolution (with and without field stitching).
3.1. Maximum Resolution
3.2. Stable Resolution with Field Stitching
3.3. Speed
3.4. Example of Device Fabrication
4. Discussion
- The key element to increasing the field of exposure is the objective. On the one hand, the aperture should be rather high. For cheap objectives with NA values from 0.4 to 0.6, plan field of view is limited by several hundred m. A higher aperture requires more precise focusing and orientation. In our case the objective NA is not the limiting factor for the resolution. With much more expensive objectives (https://www.edmundoptics.com/p/olympus-mxplfln-20x-objective/49917/ accessed on 20 December 2023) (Olympus Corporation, Tokyo, Japan) the field of exposure should increase, and a DMD matrix with higher resolution will be needed in turn. Precise alignment between the exposed surface and the flat focal plane of the objective is essential. Additionally, these planes should be parallel to both the DMD matrix and the tube lens plane. Moreover, the microscope objective and tube lens should be coaxial and centered on the DMD matrix.
- Illumination. In our case, the resist is exposed to non-monochromatic LED light, and we do not use apochromatic objectives to compensate for this drawback. Moreover, the light source is rather weak, so the exposure takes too much time. Replacement of the LED with an intensive light source, e.g., a pulsed laser, will solve most of the problems. However, such a replacement of the light source will require a rearrangement of the whole illumination scheme, including some lenses and a homogenizer.
- Software could be made more sophisticated to perform alignment, corrections for autofocus, and advanced tiling of complex designs. More importantly, the pixels located at the edge of the exposure area receive different illumination from the pixels located in the depth of the exposure area. Such effects can be taken into account at the stage of image processing by digitally adjusting the brightness of the edge pixels. This procedure will improve the resolution and is especially crucial at the outer contour.
- The next issue involves precision mechanics. The X and Y axes appear to be perpendicular with high precision and require careful control. Achieving such precision typically involves expensive mechanics. In our case, we utilize affordable stepper-driven mechanical stages and compensate for backlash by assuming it to be constant for a given mechanical stage. Since we do not require sub-micrometer positioning, we adjust the field of exposure to fit exactly the step size.
- Micrometer resolution: achieving a resolution of 2 m is demonstrated, and there is potential for even better resolution with higher aperture objectives. However, using such objectives may slow down the system and necessitate re-calibration.
- Low cost: the total cost of components is approximately 3000 USD, making it potentially affordable for any laboratory. The breakdown includes Objective (140 USD), Tube Lens (30 USD), Motorized XYZ Stages (1700 USD), Camera (100 USD), DMD Module (500 USD), Mechanical Translation Stages (200 USD), Arduino-based Electronics (40 USD), and Optical Plates (200 USD).
- Compact size: the table-top machine is compact and could be integrated, e.g., into a glovebox (see Ref. [27])
- Reconfigurability. an optical breadboard-based construction allows the replacement of elements like the objective, tubelens, DMD matrix, mechanical stage, and facilitating the improvement of the setup.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Sidorenko, A. Fundamentals of Superconducting Nanoelectronics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Cotter, J.P.; McGilligan, J.P.; Griffin, P.F.; Rabey, I.M.; Docherty, K.; Riis, E.; Arnold, A.S.; Hinds, E.A. Design and fabrication of diffractive atom chips for laser cooling and trapping. Appl. Phys. B 2016, 122, 172. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kim, S.; Shi, W.; Zhao, Y.; Park, I.; Brenden, C.; Iyer, H.; Jha, P.; Bashir, R.; Sweedler, J.V.; et al. Droplet-assisted electrospray phase separation using an integrated silicon microfluidic platform. Lab A Chip 2022, 22, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Tourovskaia, A.; Folch, A. Biology on a Chip: Microfabrication for Studying the Behavior of Cultured Cells. Crit. Rev. Biomed. Eng. 2003, 31, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Dudley, D.; Duncan, W.M.; Slaughter, J. Emerging digital micromirror device (DMD) applications. In MOEMS Display and Imaging Systems; SPIE: Bellingham, WA, USA, 2003; p. 4985. [Google Scholar]
- Lee, M.; Cooper, G.; Hinkley, T.; Gibson, G.M.; Padgett, M.J.; Cronin, L. Development of a 3D printer using scanning projection stereolithography. Sci. Rep. 2015, 5, 9875. [Google Scholar] [CrossRef]
- Lin, C.; Xu, W.; Liu, B.; Wang, H.; Xing, H.; Sun, Q.; Xu, J. Three-Dimensional Printing of Large Objects with High Resolution by Dynamic Projection Scanning Lithography. Micromachines 2023, 14, 1700. [Google Scholar] [CrossRef]
- Miri, A.K.; Nieto, D.; Iglesias, L.; Goodarzi Hosseinabadi, H.; Maharjan, S.; Ruiz-Esparza, G.U.; Khoshakhlagh, P.; Manbachi, A.; Dokmeci, M.R.; Chen, S.; et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv. Mater. 2018, 30, 1800242. [Google Scholar] [CrossRef]
- Grogan, S.P.; Chung, P.H.; Soman, P.; Chen, P.; Lotz, M.K.; Chen, S.; D’Lima, D.D. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater. 2013, 9, 7218–7226. [Google Scholar] [CrossRef]
- Kasi, D.G.; de Graaf, M.N.S.; Motreuil-Ragot, P.A.; Frimat, J.-P.M.S.; Ferrari, M.D.; Sarro, P.M.; Mastrangeli, M.; van den Maagdenberg, A.M.J.M.; Mummery, C.L.; Orlova, V.V. Rapid Prototyping of Organ-on-a-Chip Devices Using Maskless Photolithography. Micromachines 2022, 13, 49. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S. Microscopic Projection Lithography for Integrating Metallic Microstructures on Silk Protein for Biodevice Applications. ACS Biomater. Sci. Eng. 2023, 9, 6390–6397. [Google Scholar] [CrossRef]
- Jindal, V.; Sugunakar, V.; Ghosh, S. Setup for photolithography on microscopic flakes of 2D materials by combining simple-geometry mask projection with writing. Rev. Sci. Instrum. 2022, 93, 023901. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zywietz, U.; Birr, T.; Duderstadt, M.; Overmeyer, L.; Roth, B.; Reinhardt, C. UV-LED projection photolithography for high-resolution functional photonic components. Microsyst. Nanoeng. 2021, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Pugachev, M.V.; Duleba, A.I.; Galiullin, A.A.; Kuntsevich, A.Y. Micromask Lithography for Cheap and Fast 2D Materials Microstructures Fabrication. Micromachines 2021, 12, 850. [Google Scholar] [CrossRef] [PubMed]
- Love, J.C.; Wolfe, D.B.; Jacobs, H.O.; Whitesides, G.M. Microscope Projection Photolithography for Rapid Prototyping of Masters with Micron-Scale Features for Use in Soft Lithography. Langmuir 2001, 17, 6005–6012. [Google Scholar] [CrossRef]
- Zheng, L.; Birr, T.; Zywiet, U.; Reinhardt, C.; Roth, B. Feature size below 100 nm realized by UV-LED-based microscope projection photolithography. Light. Adv. Manuf. 2023, 4, 33. [Google Scholar] [CrossRef]
- Chan, K.F.; Feng, Z.; Yang, R.; Ishikawa, A.; Mei, W. High-resolution maskless lithography. J. Microlith., Microfab. Microsyst. 2003, 2, 331–339. [Google Scholar] [CrossRef]
- Lee, D.-H. Optical System with 4 μm Resolution for Maskless Lithography Using Digital Micromirror Device. J. Opt. Soc. Korea 2010, 14, 266–276. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Zhao, Y.Y.; Jin, F.; Dong, X.-Z.; Zheng, M.-L.; Zhao, Z.-S.; Duan, X.-M. λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning. Nano Lett. 2021, 21, 3915–3921. [Google Scholar] [CrossRef]
- Kang, M.; Han, C.; Jeon, H. Submicrometer-scale pattern generation via maskless digital photolithography. Optica 2020, 7, 1788–1795. [Google Scholar] [CrossRef]
- Couto, N.J.G.; Sacépé, B.; Morpurgo, A.F. Transport through Graphene on SrTiO3. Phys. Rev. Lett. 2011, 107, 225501. [Google Scholar] [CrossRef]
- Veyrat, L.; Deprez, C.; Coissard, A.; Li, X.; Gay, F.; Watanabe, K.; Taniguchi, T.; Han, Z.; Piot, B.A.; Sellier, H.; et al. Helical quantum Hall phase in graphene on SrTiO3. Science 2020, 367, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, A.; Nafday, D.; Paul, T.; Ruiter, R.; Roy, A.; Mostovoy, M.; Banerjee, T.; Saha-Dasgupta, T.; Ghosh, A. Out-of-plane interface dipoles and anti-hysteresis in graphene-strontium titanate hybrid transistor. npj 2D Mater. Appl. 2018, 2, 9. [Google Scholar] [CrossRef]
- Martanov, S.G.; Zhurbina, N.K.; Pugachev, M.V.; Duleba, A.I.; Akmaev, M.A.; Belykh, V.V.; Kuntsevich, A.Y. Making van derWaals Heterostructures Assembly Accessible to Everyone. Nanomaterials 2020, 10, 2305. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, H.; Yang, J. A rasterization method for generating exposure pattern images with optical maskless lithography. J. Mech. Sci. Technol. 2018, 32, 2209–2218. [Google Scholar] [CrossRef]
- Gray, M.J.; Kumar, N.; O’Connor, R.; Hoek, M.; Sheridan, E.; Doyle, M.C.; Romanelli, M.L.; Osterhoudt, G.B.; Wang, Y.; Plisson, V.; et al. A cleanroom in a glovebox. Rev. Sci. Instrum. 2020, 91, 073909. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galiullin, A.A.; Pugachev, M.V.; Duleba, A.I.; Kuntsevich, A.Y. Cost-Effective Laboratory Matrix Projection Micro-Lithography System. Micromachines 2024, 15, 39. https://doi.org/10.3390/mi15010039
Galiullin AA, Pugachev MV, Duleba AI, Kuntsevich AY. Cost-Effective Laboratory Matrix Projection Micro-Lithography System. Micromachines. 2024; 15(1):39. https://doi.org/10.3390/mi15010039
Chicago/Turabian StyleGaliullin, Arslan A., Mikhail V. Pugachev, Aliaksandr I. Duleba, and Aleksandr Yu. Kuntsevich. 2024. "Cost-Effective Laboratory Matrix Projection Micro-Lithography System" Micromachines 15, no. 1: 39. https://doi.org/10.3390/mi15010039
APA StyleGaliullin, A. A., Pugachev, M. V., Duleba, A. I., & Kuntsevich, A. Y. (2024). Cost-Effective Laboratory Matrix Projection Micro-Lithography System. Micromachines, 15(1), 39. https://doi.org/10.3390/mi15010039