Transport in a Two-Channel Nanotransistor Device with Lateral Resonant Tunneling
Abstract
:1. Introduction
2. Model
- In the grounded source contact , we set
- In the drain contact , we set .
- In the device kernel (‘scattering area’), we cut off the wave functions in the top-gate oxide and the BOX_bottom. In the remaining tunneling coupled quantum wells, we choose a piecewise linear potential of the separable form
- The chemical potential in the source in Appendix B
- The supply function in Appendix C
- For the evaluation of the two-dimensional current transmission , we apply in Section 3.1 the EAPS and in Section 3.2 the fully numerical 2D model.
3. Results
3.1. Effective Approximation for Planar Systems (EAPS)
3.2. Full Numerical Calculations on 2D Models
4. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2CTFET | two-channel tunneling field-effect transistor |
2D | two-dimensional |
DELTT | double electron layer tunneling transistors |
EAPS | effective approximation for planar systems |
FET | field-effect transistor |
MOSFET | metal oxide semiconductor field-effect transistor |
SOI | silicon-on-insulator |
Appendix A. Transverse Modes in the Contacts
1 | 2 | 3 | 4 | |
---|---|---|---|---|
in eV | 0.1295 | 0.5180 | 1.1654 | 2.0718 |
Appendix B. Chemical Potential in the Source/Drain Contacts
Appendix C. Supply Function
Appendix D. Transverse Modes in the Device Kernel
1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|
in eV for | 0.1105 | 0.1106 | 0.4401 | 0.4402 | 0.9800 | 0.9811 |
in eV for | 0.0307 | 0.0901 | 0.3606 | 0.4198 | 0.9014 | 0.9597 |
Appendix E. Two-Dimensional Current Transmission in EAPS
Appendix E.1. Wave Function Overlap
Appendix E.2. One-Dimensional Current Transmission
Appendix E.3. Numerical Evaluation of the Two-Dimensional Current Transmission
References
- Smoliner, J.; Gornik, E.; Weimann, G. Depletion charge measurements by tunneling spectroscopy GaAs-GaAlAs field effect transistors. Appl. Phys. Lett. 1988, 52, 2136. [Google Scholar] [CrossRef]
- Smoliner, J.; Demmerle, W.; Berthold, G.; Gornik, E.; Weimann, G.; Schlapp, W. Momentum conservation in tunneling processes between barrier-separated 2D-electron-gas systems. Phys. Rev. Lett. 1989, 63, 2116. [Google Scholar] [CrossRef] [PubMed]
- Eisenstein, J.P.; Pfeiffer, L.N.; West, K.W. Independently contacted two-dimensional electron systems in double quantum wells. Appl. Phys. Lett. 1990, 57, 2324. [Google Scholar] [CrossRef]
- Demmerle, W.; Smoliner, J.; Berthold, G.; Gornik, E.; Weimann, G.; Schlapp, W. Tunneling spectroscopy in barrier-separated two-dimensional electron-gas systems. Phys. Rev. B 1991, 44, 3090. [Google Scholar] [CrossRef]
- Eisenstein, J.P.; Pfeiffer, L.N.; West, K.W. Field-induced resonant tunneling between parallel two-dimensional electron systems. Appl. Phys. Lett. 1991, 58, 1497. [Google Scholar] [CrossRef]
- Brown, K.M.; Linfield, E.H.; Ritchie, D.A.; Jones, G.A.C.; Grimshaw, M.P.; Pepper, M. Resonant tunneling between parallel, two-dimensional electron gases: A new approach to device fabrication using in situ ion beam lithography and molecular beam epitaxy growth. Appl. Phys. Lett. 1994, 64, 1827. [Google Scholar] [CrossRef]
- Patel, N.K.; Kurobe, A.; Castleton, I.M.; Linfield, E.H.; Brown, K.M.; Grimshaw, M.P.; Ritchie, D.A.; Jones, G.A.C.; Pepper, M. Lateral transport studies of coupled electron gase. Semicond. Sci. Technol. 1996, 11, 703. [Google Scholar] [CrossRef]
- Rubel, H.; Fischer, A.; Dietsche, W.; von Klitzing, K.; Eberl, K. Fabrication of independently contacted and tuneable 2D-electron-hole systems in GaAs/AlGaAs double quantum wells. Mater. Sci. Eng. B 1998, 51, 207. [Google Scholar] [CrossRef]
- Simmons, J.A.; Blount, M.A.; Moon, J.S.; Lyo, S.K.; Baca, W.E.; Wendt, J.R.; Reno, J.L.; Hafich, M.J. Planar quantum transistor based on 2D-2D tunneling in double quantum well heterostructures. J. Appl. Phys. 1998, 84, 5626. [Google Scholar] [CrossRef]
- Moon, J.S.; Simmons, J.A.; Blount, M.A.; Reno, J.L.; Hafich, M.J. Unipolar complementary circuits using double electron layer tunneling transistors. Appl. Phys. Lett. 1999, 74, 314. [Google Scholar] [CrossRef]
- Nield, S.A.; Nicholls, J.T.; Tribe, W.R.; Simmons, M.Y.; Ritchie, D.A. Independent contacts to a double-electron gas using mesoscopic surface gates. J. Appl. Phys. 2000, 87, 4036. [Google Scholar] [CrossRef]
- Moon, J.S.; Rajavel, R.; Bui, S.; Wong, D.; Chow, D.H. Room-Temperature InAlAs/InGaAs Planar Tunneling-coupled Transistor. Appl. Phys. Lett. 2005, 87, 183110. [Google Scholar] [CrossRef]
- Lang, S.; Worschech, L.; Emmerling, M.; Strauss, M.; Hofling, S.; Forchel, A. Selective etching of independent contacts in a double quantum-well structure: Quantum-gate transistor. Appl. Phys. Lett. 2008, 92, 062101. [Google Scholar] [CrossRef]
- Sciambi, A.; Pelliccione, M.; Lilly, M.P.; Bank, S.R.; Gossard, A.C.; Pfeiffer, L.N.; West, K.W.; Goldhaber-Gordon, D. Vertical field-effect transistor based on wave-function extension. Phys. Rev. B 2011, 84, 085301. [Google Scholar] [CrossRef]
- Smoliner, J. Tunnelling spectroscopy of low-dimensional states. Semicond. Sci. Technol. 1996, 11, 1. [Google Scholar] [CrossRef]
- Turner, N.; Nicholls, J.T.; Linfield, E.H.; Brown, K.M.; Jones, G.A.C.; Ritchie, D.A. Tunneling between parallel two-dimensional electron gases. Phys. Rev. B 1996, 54, 10614. [Google Scholar] [CrossRef]
- Hu, C.M.; Heitmann, D. Bilayer quantum transistor. Appl. Phys. Lett. 2000, 77, 1475–1477. [Google Scholar] [CrossRef]
- Schwarzenbach, W.; Besnard, G.; Chabanne, G.; Nguyen, B.Y. Double SOI substrates for Advanced Technologies. In Proceedings of the 2019 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), San Jose, CA, USA, 14–17 October 2019. [Google Scholar]
- Wulf, U. A One-Dimensional Effective Model for Nanotransistors in Landauer–Büttiker Formalism. Micromachines 2020, 11, 359. [Google Scholar] [CrossRef]
- Nemnes, G.A.; Wulf, U.; Racec, P.N. Nano-transistors in the Landauer–Büttiker formalism. J. Appl. Phys. 2004, 96, 596. [Google Scholar] [CrossRef]
- Nemnes, G.A.; Wulf, U.; Racec, P.N. Nonlinear I-V characteristics of nanotransistors in the Landauer–Büttiker formalism. J. Appl. Phys. 2005, 98, 84308. [Google Scholar] [CrossRef]
- Wulf, U.; Kučera, J.; Richter, H.; Horstmann, M.; Wiatr, M.; Höntschel, J. Channel engineering for nanotransistors in a semiempirical quantum transport model. Mathematics 2017, 5, 68. [Google Scholar] [CrossRef]
- Wulf, U. An Electron Waveguide Model for FDSOI Transistors. Solids 2022, 3, 203–218. [Google Scholar] [CrossRef]
- Smrcka, L. R-matrix and the coherent transport in mesoscopic systems. Superlattices Microstruct. 1990, 8, 221–224. [Google Scholar] [CrossRef]
- Groth, C.W.; Wimmer, M.; Akhmerov, A.R.; Waintal, X. Kwant: A software package for quantum transport. New J. Phys. 2014, 16, 063065. [Google Scholar] [CrossRef]
- Ando, T. Quantum point contacts in magnetic fields. Phys. Rev. B 1991, 44, 8017–8027. [Google Scholar] [CrossRef]
- Zwierzycki, M.; Khomyakov, P.A.; Starikov, A.A.; Xia, K.; Talanana, M.; Xu, P.X.; Karpan, V.M.; Marushchenko, I.; Turek, I.; Bauer, G.E.W.; et al. Calculating scattering matrices by wave function matching. Phys. Status Solidi (b) 2008, 245, 623–640. [Google Scholar] [CrossRef]
- Britnell, L.; Gorbachev, R.V.; Geim, A.K.; Ponomarenko, L.A.; Mishchenko, A.; Greenaway, M.T.; Fromhold, T.M.; Novoselov, K.S.; Eaves, L. Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 2013, 4, 1794. [Google Scholar] [CrossRef]
- Dragoman, M.; Dragoman, D. Negative differential resistance in novel nanoscale devices. Solid-State Electron. 2022, 197, 108464. [Google Scholar] [CrossRef]
- Efremov, M.D.; Kamaev, G.N.; Volodin, V.A.; Arzhannikova, S.A.; Kachurin, G.A.; Cherkova, S.G.; Kretinin, A.V.; Malyutina-Bronskaya, V.V.; Marin, D.V. Coulomb blockade of the conductivity of SiOx films due to one-electron charging of a silicon quantum dot in a chain of electronic states. Semiconductors 2005, 39, 910–916. [Google Scholar] [CrossRef]
Quantity | Notation | Values |
---|---|---|
Thickness of SOI_top and SOI_bottom | 3 nm | |
Isotropic effective mass | ||
Valley degeneracy | 6 | |
Channel length | L | 30 nm |
Doping in source/drain contact | 5 × 1020 cm−3 | |
Potential at interface BOX_bottom/SOI_bottom | 0 | |
Gate insulator thickness | 8 nm | |
Width of the 2CTFET in the z-direction | W | up to ∞ |
Height of tunnel barrier | 1 eV or 2 eV | |
Potential at interface between top gate oxide/SOI_top | −0.2 eV ≤≤ 0 | |
Drain voltage | 0 or 0.2 V | |
Device temperature | T | 300 K or 10 K |
Tunnel barrier thickness (BOX_top, SiO2) | 1 nm to 3 nm, mainly 2 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wulf, U.; Preda, A.T.; Nemnes, G.A. Transport in a Two-Channel Nanotransistor Device with Lateral Resonant Tunneling. Micromachines 2024, 15, 1270. https://doi.org/10.3390/mi15101270
Wulf U, Preda AT, Nemnes GA. Transport in a Two-Channel Nanotransistor Device with Lateral Resonant Tunneling. Micromachines. 2024; 15(10):1270. https://doi.org/10.3390/mi15101270
Chicago/Turabian StyleWulf, Ulrich, Amanda Teodora Preda, and George Alexandru Nemnes. 2024. "Transport in a Two-Channel Nanotransistor Device with Lateral Resonant Tunneling" Micromachines 15, no. 10: 1270. https://doi.org/10.3390/mi15101270
APA StyleWulf, U., Preda, A. T., & Nemnes, G. A. (2024). Transport in a Two-Channel Nanotransistor Device with Lateral Resonant Tunneling. Micromachines, 15(10), 1270. https://doi.org/10.3390/mi15101270