Crack Control in Additive Manufacturing by Leveraging Process Parameters and Lattice Design
Abstract
:1. Introduction
2. Experimental
2.1. PBF AM Process
2.2. Selection of Lattice Structures
2.3. Charpy Impact Tests
2.4. Design of Specimens for Crack Guidance
3. Results and Discussions
3.1. Physical Properties of the AMed Specimens with Lattice Structures
3.2. Crack Behavior of AMed Specimens with Lattice Structures
3.3. Case Study
4. Conclusions
- Lattice structure type significantly influences crack propagation patterns. OT tends to exhibit straighter crack paths, while DM shows more random fracture patterns.
- Lattice density plays a crucial role in impact energy absorption. Higher-density lattices demonstrate superior impact energy compared to lower-density structures for both OT and DM configurations.
- PBF affects the mechanical properties of the fabricated structures. Higher laser energy generally results in improved impact energy absorption, particularly for higher-density lattices.
- The geometry of the specimen (angle vs. stair) interacts with lattice type to influence crack propagation behavior. DM shows better crack propagation in angle specimens, while OT exhibits superior impact energy in stair-shaped specimens.
- The combination of OT and DM can be effectively used to guide crack propagation along predetermined paths, as demonstrated in the case study. This approach offers the potential for protecting critical components.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahman, M.; Islam, K.S.; Dip, T.M.; Chowdhury, M.F.M.; Debnath, S.R.; Hasan, S.M.M.; Sakib, M.S.; Saha, T.; Padhye, R.; Houshyar, S. A review on nanomaterial-based additive manufacturing: Dynamics in properties, prospects, and challenges. Prog. Addit. Manuf. 2024, 9, 1197–1224. [Google Scholar] [CrossRef]
- Tofail, S.A.M.; Koumoulos, E.P.; Bandyopadhyay, A.; Bose, S.; O’Donoghue, L.; Charitidis, C. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities. Mater. Today 2018, 21, 22–37. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, J.E.; Park, J.; Lee, N.-K.; Son, Y.; Park, S.-H. High-temperature 3D printing of polyetheretherketone products: Perspective on industrial manufacturing applications of super engineering plastics. Mater. Des. 2021, 211, 110163. [Google Scholar] [CrossRef]
- Tang, P.; Zhao, X.; Shi, H.; Hu, B.; Ding, J.; Yang, B.; Xu, W. A review of multi-axis additive manufacturing: Potential, opportunity and challenge. Addit. Manuf. 2024, 83, 104075. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, J.S.; Lee, J.E.; Moon, S.K.; Son, Y.; Park, S.-H. Influence of Nozzle Temperature on Gas Emissions and Mechanical Properties in Material Extrusion-based Additive Manufacturing of Super Engineering Plastics. Int. J. Precis. Eng. Manuf. Green Technol. 2024, 11, 1769–1779. [Google Scholar] [CrossRef]
- Muflikhun, M.A.; Syahril, M.; Mamba’udin, A.; Santos, G.N.C. A novel of hybrid laminates additively manufactured via material extrusion–vat photopolymerization. J. Eng. Res. 2023, 11, 498–508. [Google Scholar] [CrossRef]
- Yang, Y.; Jiang, R.; Han, C.; Chen, J.; Li, H.; Wang, Y.; Tang, J.; Zhou, H.; Hu, W.; Zheng, B.; et al. Frontiers in Laser Additive Manufacturing Technology. Addit. Manuf. Front. 2024, 3, 200160. [Google Scholar] [CrossRef]
- Ibhadode, O.; Zhang, Z.; Sixt, J.; Nsiempba, K.M.; Orakwe, J.; Martinez-Marchese, A.; Ero, O.; Shahabad, S.I.; Bonakdar, A.; Toyserkani, E. Topology optimization for metal additive manufacturing: Current trends, challenges, and future outlook. Virtual Phys. Prototyp. 2023, 18, e2181192. [Google Scholar] [CrossRef]
- Jagadeesh, B.; Duraiselvam, M.; Prashanth, K.G. Deformation and energy absorption studies on FBCC and FBCCz lattice structures with symmetrical density gradients produced by L-PBF of Ti-6Al-4V alloy. Mater. Today Proc. 2024, in press. [Google Scholar] [CrossRef]
- Pugliese, R.; Graziosi, S. Biomimetic scaffolds using triply periodic minimal surface-based porous structures for biomedical applications. SLAS Technol. 2023, 28, 165–182. [Google Scholar] [CrossRef]
- Pham, M.-S.; Liu, C.; Todd, I.; Lertthanasarn, J. Damage-tolerant architected materials inspired by crystal microstructure. Nature 2019, 565, 305–311. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, J.H.; Yang, J.; Moon, S.K.; Son, Y.; Park, J. Enhanced Energy Absorption of Additive-Manufactured Ti-6Al-4V Parts via Hybrid Lattice Structures. Micromachines 2023, 14, 1982. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, S.; Liu, T.; Li, P.; Duan, F. Effective heat conduction evaluation of lattice structures from selective laser melting printing. Int. J. Heat Mass Transf. 2024, 218, 124790. [Google Scholar] [CrossRef]
- Kang, D.; Park, S.; Son, Y.; Yeon, S.; Kim, S.H.; Kim, I. Multi-lattice inner structures for high-strength and light-weight in metal selective laser melting process. Mater. Des. 2019, 175, 107786. [Google Scholar] [CrossRef]
- Huang, R.; Dai, N.; Pan, C.; Yang, Y.; Jiang, X.; Tian, S.; Zhang, Z. Grid-Tree Composite Support Structures for Lattice Parts in Selective Laser Melting. Mater. Des. 2023, 225, 111499. [Google Scholar] [CrossRef]
- Maskery, I.; Aremu, A.O.; Simonelli, M.; Tuck, C.; Wildman, R.D.; Ashcroft, I.A.; Hague, R.J.M. Mechanical Properties of Ti-6Al-4V Selectively Laser Melted Parts with Body-Centred-Cubic Lattices of Varying Cell Size. Exp. Mech. 2015, 55, 1261–1272. [Google Scholar] [CrossRef]
- Gao, Z.; Li, D.; Dong, G.; Zhao, Y.F. Crack path-engineered 2D octet-truss lattice with bio-inspired crack deflection. Addit. Manuf. 2020, 36, 101539. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.J.; Yang, J.; Yeon, S.M.; Hong, S.; Son, Y.; Park, J. Crack Guidance Utilizing the Orientation of Additive Manufactured Lattice Structure. Int. J. Precis. Eng. Manuf. 2022, 23, 797–805. [Google Scholar] [CrossRef]
- Dhar Malingam, S.; Jumaat, F.A.; Ng, L.F.; Subramaniam, K.; Ab Ghani, A.F. Tensile and impact properties of cost-effective hybrid fiber metal laminate sandwich structures. Adv. Polym. Technol. 2018, 37, 2385–2393. [Google Scholar] [CrossRef]
- Raju, N.; Kim, S.; Rosen, D.W. A characterization method for mechanical properties of metal powder bed fusion parts. Int. J. Adv. Manuf. Technol. 2020, 108, 1189–1201. [Google Scholar] [CrossRef]
- Xu, Y.; Gan, Y.; Chang, Z.; Wan, Z.; Schlangen, E.; Šavija, B. Towards understanding deformation and fracture in cementitious lattice materials: Insights from multiscale experiments and simulations. Constr. Build. Mater. 2022, 345, 128409. [Google Scholar] [CrossRef]
- Schneider, J.; Kumar, S. Comparative performance evaluation of microarchitected lattices processed via SLS, MJ, and DLP 3D printing methods: Experimental investigation and modelling. J. Mater. Res. Technol. 2023, 26, 7182–7198. [Google Scholar] [CrossRef]
- Liu, R.; Chen, W.; Zhao, J. A Review on Factors Affecting the Mechanical Properties of Additively-Manufactured Lattice Structures. J. Mater. Eng. Perform. 2024, 33, 4685–4711. [Google Scholar] [CrossRef]
- O’Masta, M.R.; Dong, L.; St-Pierre, L.; Wadley, H.N.G.; Deshpande, V.S. The fracture toughness of octet-truss lattices. J. Mech. Phys. Solids 2017, 98, 271–289. [Google Scholar] [CrossRef]
- Shu, X.; Mao, Y.; Lei, M.; Da, D.; Hou, S.; Zhang, P. Toughness enhancement of honeycomb lattice structures through heterogeneous design. Mater. Des. 2022, 217, 110604. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.H.; Park, S.J.; Yang, J.; Moon, S.K.; Park, J. Crack Control in Additive Manufacturing by Leveraging Process Parameters and Lattice Design. Micromachines 2024, 15, 1361. https://doi.org/10.3390/mi15111361
Lee JH, Park SJ, Yang J, Moon SK, Park J. Crack Control in Additive Manufacturing by Leveraging Process Parameters and Lattice Design. Micromachines. 2024; 15(11):1361. https://doi.org/10.3390/mi15111361
Chicago/Turabian StyleLee, Jun Hak, Seong Je Park, Jeongho Yang, Seung Ki Moon, and Jiyong Park. 2024. "Crack Control in Additive Manufacturing by Leveraging Process Parameters and Lattice Design" Micromachines 15, no. 11: 1361. https://doi.org/10.3390/mi15111361
APA StyleLee, J. H., Park, S. J., Yang, J., Moon, S. K., & Park, J. (2024). Crack Control in Additive Manufacturing by Leveraging Process Parameters and Lattice Design. Micromachines, 15(11), 1361. https://doi.org/10.3390/mi15111361