Laser Cutting of Non-Woven Fabric Using UV Nanosecond Pulsed Laser
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laser Cutting Experiments
2.3. Surface Characterizations
3. Results and Discussions
3.1. Width of Kerf
3.2. Effect of Scanning Speed on Surface Morphology and Chemical Composition of Non-Woven Fabric
3.3. Effect of Frequency on Surface Morphology and Chemical Composition of Non-Woven Fabric
3.4. Surface Morphology and Chemical Contents Affected by Different Treatments
4. Conclusions
- The ablative oxidation and carbonization occur on the non-woven fabric surface, resulting in the generation of a carbonized spherical structure around the kerf. In the meantime, the effect of laser scanning speed and frequency on the kerf width and micro-nano structures of non-woven fabric surfaces is systematically investigated.
- Under the premise that the non-woven fabric can be completely cut off efficiently at one time and the kerf carbonization degree can be reduced to the greatest extent, a narrow kerf can be obtained when the laser processing parameters are set at a scanning speed of 500 mm/s and a frequency of 30 kHz. The results of this experiment are applicable to the non-woven fabric used in this work, and further experiments are needed in the future to improve the applicability of this work.
- Finally, the non-woven fabric treated by laser cutting has a smooth feeling similar to that of traditional cutting methods such as scissor cutting.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, W.F.; Xue, Y.S.; Li, G.; Peng, H.; Gong, G.C.; Yan, R.; Zhao, X.; Pang, J. Highly-sensitive wearable pressure sensor based on AgNWs/MXene/ non-woven fabric. Org. Electron. 2024, 125, 11. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.H.; Zhai, W.J.; Zhang, Z.N.; Liu, Y.H.; Cheng, S.J.; Zhang, H.Y. In-situ growth of robust superlubricated nano-skin on electrospun nanofibers for post-operative adhesion prevention. Nat. Commun. 2022, 13, 5056. [Google Scholar] [CrossRef] [PubMed]
- Meliande, N.M.; Oliveira, M.S.; Pereira, A.C.; Balbino, F.D.P.; Figueiredo, A.B.D.; Monteiro, S.N.; Nascimento, L.F.C. Ballistic properties of curaua-aramid laminated hybrid composites for military helmet. J. Mater. Res. Technol. 2023, 25, 3943–3956. [Google Scholar] [CrossRef]
- Vidal, J.; Ponce, D.; Mija, A.; Rymarczyk, M.; Castell, P. Sustainable Composites from Nature to Construction: Hemp and Linseed Reinforced Biocomposites Based on Bio-Based Epoxy Resins. Materials 2023, 16, 17. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.Y.; Wang, W.W.; Lv, X.Y.; Jiao, S.H.; Pang, G.S. Fabrication of superwetting non-woven fabric by grafting one-dimensional inorganic nanostructure for efficient separation of surfactant-stabilized organic solvent/water emulsions. Colloid Surf. A-Physicochem. Eng. Asp. 2023, 663, 9. [Google Scholar] [CrossRef]
- Eissa, A.; Alfaro, M.; Bartz, J.R.; Bassuoni, M.T.; Bhat, S. Soil-Reinforcement Interaction of a Geogrid-Geotextile Composite. Int. J. Geosynth. Ground Eng. 2023, 9, 85. [Google Scholar] [CrossRef]
- Su, X.; Sha, Q.K.; Gao, X.F.; Li, J.H.; Wu, Y.T.; Li, W.; Wu, W.G.; Han, N.; Zhang, X.X. Lightweight, multifunctional smart MXene@PET non-woven with electric/photothermal conversion, antibacterial and flame retardant properties. Appl. Surf. Sci. 2023, 639, 158205. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, W.; Li, J.; Liu, H.; Li, C.; Li, J. Friction behavior of biodegradable electrospun polyester nanofibrous membranes. Tribol. Int. 2023, 188, 108891. [Google Scholar] [CrossRef]
- Ou, K.K.; Liu, Y.; Deng, L.L.; Chen, S.Y.; Gu, S.; Wang, B.X. Covalently grafting polycation to bacterial cellulose for antibacterial and anti-cell adhesive wound dressings. Int. J. Biol. Macromol. 2024, 269, 132157. [Google Scholar] [CrossRef]
- Cepauskaite, L.; Bendikiene, R. Effect of Fiber-Laser Parameters on Cutting Accuracy of Thin and Thick S355JR Structural Steel Plates. Metals 2024, 14, 723. [Google Scholar] [CrossRef]
- Wu, C.Y.; Rong, Y.M.; Huang, Y.; Li, M.; Zhang, G.J.; Liu, W.N. Precision cutting of polyvinyl chloride film by ultraviolet nanosecond laser. Mater. Manuf. Process. 2021, 36, 1650–1657. [Google Scholar] [CrossRef]
- Hung, O.N.; Chan, C.K.; Kan, C.W.; Yuen, C.W.M. Effect of the CO2 laser treatment on properties of 100% cotton knitted fabrics. Cellulose 2017, 24, 1915–1926. [Google Scholar] [CrossRef]
- Liou, Y.D.; Chau, K.H.; Hui, C.Y.; He, J.L.; Lam, Y.L.; Kan, C.W. An Analysis of Effect of CO2 Laser Treatment on Carbon Fibre Fabric. Coatings 2018, 8, 178. [Google Scholar] [CrossRef]
- Dai, J.X.; Li, X.H. Effect of different hole shape of thermal barrier on the performance for thermal protective clothing. J. Ind. Text. 2022, 51, 2499S–2513S. [Google Scholar] [CrossRef]
- Hung, O.N.; Chan, C.K.; Kan, C.W.; Yuen, C.W.M. An analysis of some physical and chemical properties of CO2 laser-treated cotton-based fabrics. Cellulose 2017, 24, 363–381. [Google Scholar] [CrossRef]
- Zoghi, M.; Dehkordi, A.J. CW CO2 laser cutting of multiple-layer blended fabric. Optik 2023, 287, 171168. [Google Scholar] [CrossRef]
- Madic, M.J.; Radovanovic, M.R. Analysis of the heat affected zone in co2 laser cutting of stainless steel. Therm. Sci. 2012, 16, S363–S373. [Google Scholar] [CrossRef]
- Wandera, C.; Kujanpää, V.; Salminen, A. Laser power requirement for cutting thick-section steel and effects of processing parameters on mild steel cut quality. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 2011, 225, 651–661. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Yang, C.C.; Hsiao, W.T.; Huang, K.C.; Yeh, J.A. Analysis of fabric materials cut using ultraviolet laser ablation. Appl. Phys. A-Mater. Sci. Process. 2016, 122, 304. [Google Scholar] [CrossRef]
- Stonyte, D.; Jukna, V.; Gailevicius, D.; Paipulas, D. Nonthermal ablation of crystalline c-cut Sapphire using femtosecond deep UV laser pulses. Opt. Laser Technol. 2024, 179, 111362. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, J.J.; Liu, X.F.; Yin, K.; Wang, H.X.; Wang, Q.H. Facile laser-based process of superwetting zirconia ceramic with adjustable adhesion for self-cleaning and lossless droplet transfer. Appl. Surf. Sci. 2023, 638, 158069. [Google Scholar] [CrossRef]
- Sreckovic, M.Z.; Kaludjerovic, B.; Kovacevic, A.G.; Bugarinovic, A.; Druzijanic, D. Interaction of laser beams with carbon textile materials. Int. J. Cloth. Sci. Technol. 2015, 27, 720–737. [Google Scholar] [CrossRef]
- Minaeva, E.D.; Kuryanova, A.S.; Dulyasova, A.A.; Minaeva, S.A.; Minaev, N.V.; Kostjuk, S.V.; Demina, T.S.; Akopova, T.A.; Timashev, P.S. Laser Technology of Directional Microstructuring of Biodegradable Nonwovens. High Energy Chem. 2022, 56, 138–144. [Google Scholar] [CrossRef]
- Stepánková, M.; Wiener, J.; Dembicky, J. Properties of Cotton Fabric After Irradiation with Infrared CO2 Laser. Fiber. Polym. 2014, 15, 2072–2076. [Google Scholar] [CrossRef]
- Dubrovski, P.D.; Novak, N.; Borovinsek, M.; Vesenjak, M.; Ren, Z.R. In-Plane Behavior of Auxetic Non-Woven Fabric Based on Rotating Square Unit Geometry under Tensile Load. Polymers 2019, 11, 1040. [Google Scholar] [CrossRef]
- Hung, O.N.; Kan, C.W. Effect of CO2 Laser Treatment on the Fabric Hand of Cotton and Cotton/Polyester Blended Fabric. Polymers 2017, 9, 609. [Google Scholar] [CrossRef]
- Tse, S.T.; Kan, C.W. Effect of laser treatment on pigment printing on denim fabric: Low stress mechanical properties. Cellulose 2020, 27, 10385–10405. [Google Scholar] [CrossRef]
- Levchik, S.V.; Weil, E.D. A review on thermal decomposition and combustion of thermoplastic polyesters. Polym. Adv. Technol. 2004, 15, 691–700. [Google Scholar] [CrossRef]
- Feng, C.M.; Liang, M.Y.; Jiang, J.L.; Huang, J.G.; Liu, H.B. Flame retardancy and thermal degradation behavior of efficient intumescent flame retardant LDPE composite containing 4A zeotile. J. Anal. Appl. Pyrolysis 2016, 118, 9–19. [Google Scholar] [CrossRef]
- Du, W.; Gosh, R.C.; Zuo, D.Y.; Zou, H.T.; Tian, L.; Yi, C.H. Discoloration of Cotton/Kapok Indigo Denim Fabric by Using a Carbon Dioxide Laser. Fibres Text. East. Eur. 2016, 24, 63–67. [Google Scholar] [CrossRef]
- Du, Y.P.; Luo, Z.H.; Yang, Y.; Yang, Y.M.; Yuan, W.J.; Li, H.; Hong, Y.Q.; Dai, Z.; Zhang, P.X.; Zhao, T. Theoretical and experimental investigations into the pyrolysis mechanisms of silicon-modified phenolic resin under high temperatures. Carbon 2023, 201, 504–519. [Google Scholar] [CrossRef]
- Balabanovich, A.I. The effect of ammonium polyphosphate on the combustion and thermal decomposition behavior of poly(butylene terephthalate). J. Fire Sci. 2003, 21, 285–298. [Google Scholar] [CrossRef]
- Zhou, J.; Shen, H.; Yu, X.; Hu, J.; Yao, Z.Q. On the competition between in-plane and out-of-plane deformations in laser thermal adjustment. Opt. Laser Technol. 2013, 45, 689–696. [Google Scholar] [CrossRef]
- Pei, C.G.; Guo, Z.X.; Xiao, J.G. Effect of Laser Remelting on the Corrosion Properties of Laser Thermal Sprayed A85Ni8Y4Ce3 Amorphous Coatings. Laser Eng. 2021, 51, 15–27. [Google Scholar]
- Khan, S.A.; Boltaev, G.S.; Iqbal, M.; Kim, V.; Ganeev, R.A.; Alnaser, A.S. Ultrafast fiber laser-induced fabrication of superhydrophobic and self-cleaning metal surfaces. Appl. Surf. Sci. 2021, 542, 148560. [Google Scholar] [CrossRef]
- Herzog, D.; Jaeschke, P.; Meier, O.; Haferkamp, H. Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP. Int. J. Mach. Tools Manuf. 2008, 48, 1464–1473. [Google Scholar] [CrossRef]
- Penava, Z.; Penava, D.S.; Nakic, M. Woven Fabrics Behavior in Pure Shear. J. Eng. Fiber Fabr. 2015, 10, 114–125. [Google Scholar] [CrossRef]
- Yuan, X.; Li, W.; Xiao, Z.; Zhang, Y. Prediction of temperature-dependent transverse strength of carbon fiber reinforced polymer composites by a modified cohesive zone model. Compos. Struct. 2023, 304, 116310. [Google Scholar] [CrossRef]
- Xu, F.; Zhu, S.Z.; Liu, Y.B.; Ma, Z.; Li, H.Z. Ablation behavior and mechanism of TaSi2-modified carbon fabric-reinforced phenolic composite. J. Mater. Sci. 2020, 55, 8553–8563. [Google Scholar] [CrossRef]
- Miyaji, G.; Miyazaki, K. Nanostructure formation process in low-fluence femtosecond-laser ablation of thin film surface. Chin. Opt. Lett. 2007, 5, S201–S203. [Google Scholar]
Frequency (kHz) | Average Power (W) | Pulse Width (ns) | Pulse Energy (µJ) | Peak Power (MW) | Power Density (GW/cm2) |
---|---|---|---|---|---|
20 | 3.53 | 8.97 | 176.50 | 0.0197 | 0.6959 |
30 | 6.09 | 9.91 | 203.00 | 0.0205 | 0.7245 |
40 | 6.7 | 11.43 | 167.50 | 0.0147 | 0.5183 |
50 | 6.37 | 13.01 | 127.40 | 0.0098 | 0.3463 |
60 | 5.82 | 14.39 | 97.00 | 0.0067 | 0.2384 |
70 | 5.21 | 16.19 | 74.43 | 0.0046 | 0.1626 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Liu, C.; Zhao, R.; Wang, H.; Yu, Z.; Wang, Q. Laser Cutting of Non-Woven Fabric Using UV Nanosecond Pulsed Laser. Micromachines 2024, 15, 1390. https://doi.org/10.3390/mi15111390
Fu J, Liu C, Zhao R, Wang H, Yu Z, Wang Q. Laser Cutting of Non-Woven Fabric Using UV Nanosecond Pulsed Laser. Micromachines. 2024; 15(11):1390. https://doi.org/10.3390/mi15111390
Chicago/Turabian StyleFu, Jiajun, Chao Liu, Runhan Zhao, Huixin Wang, Zhongjie Yu, and Qinghua Wang. 2024. "Laser Cutting of Non-Woven Fabric Using UV Nanosecond Pulsed Laser" Micromachines 15, no. 11: 1390. https://doi.org/10.3390/mi15111390
APA StyleFu, J., Liu, C., Zhao, R., Wang, H., Yu, Z., & Wang, Q. (2024). Laser Cutting of Non-Woven Fabric Using UV Nanosecond Pulsed Laser. Micromachines, 15(11), 1390. https://doi.org/10.3390/mi15111390