Spatial Discrimination Limit Analysis of Macrophage Phagocytosis Between Target Antigens and Non-Target Objects Using Microcapillary Manipulation Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Preparation of IgG-Coated Antigen Samples
2.3. Observation of Cluster Antigen Phagocytosis
3. Results and Discussion
3.1. Engulfment of Cluster of IgG-Coated/Non-Coated Polystyrene Particle Mixture
3.2. Controlled Attachment of Coupled IgG-Coated/Non-Coated Polystyrene Two Particles with Microcapillary Tube Manipulation: Vertical Direction
3.3. Controlled Attachment of Coupled IgG-Coated/Non-Coated Polystyrene Two Particles with Microcapillary Tube Manipulation: Horizontal Direction
3.4. Pinch-Off Force of Phagocytosis at the End of the Uptake Process
3.5. Spatial Discrimination Limit of Macrophage Phagocytosis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geissmann, F.; Manz, M.G.; Jung, S.; Sieweke, M.H.; Merad, M.; Ley, K. Development of monocytes, macrophages, and dendritic cells. Science 2010, 327, 656–661. [Google Scholar] [CrossRef]
- Coppolino, M.G.; Krause, M.; Hagendorff, P.; Monner, D.A.; Trimble, W.; Grinstein, S.; Wehland, J.; Sechi, A.S. Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcγ receptor signalling during phagocytosis. J. Cell Sci. 2001, 114, 4307–4318. [Google Scholar] [CrossRef]
- Aderem, A.; Underhill, D.M. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 1999, 17, 593–623. [Google Scholar] [CrossRef] [PubMed]
- Underhill, D.M.; Goodridge, H.S. Information processing during phagocytosis. Nat. Rev. Immunol. 2012, 12, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Fessler, M.B.; Qu, P.; Heymann, J.; Kopp, J.B. Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease. BMC Nephrol. 2020, 21, 270. [Google Scholar] [CrossRef] [PubMed]
- Grabacka, M.; Pierzchalska, M.; Płonka, P.M.; Pierzchalski, P. The role of PPAR alpha in the modulation of innate immunity. Int. J. Mol. Sci. 2021, 22, 545. [Google Scholar] [CrossRef] [PubMed]
- Abaricia, J.O.; Farzad, N.; Heath, T.J.; Simmons, J.; Morandini, L.; Olivares-Navarrete, R. Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomater. 2021, 133, 58–73. [Google Scholar] [CrossRef]
- Chen, S.; Saeed, A.F.; Liu, Q.; Jiang, Q.; Xu, H.; Xiao, G.G.; Rao, L.; Duo, Y. Macrophages in immunoregulation and therapeutics. Signal Transduct. Target. Ther. 2023, 8, 207. [Google Scholar] [CrossRef]
- Swanson, J.A. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol. 2008, 9, 639–649. [Google Scholar] [CrossRef]
- Richards, D.M.; Endres, R.G. The mechanism of phagocytosis: Two stages of engulfment. Biophys. J. 2014, 107, 1542–1553. [Google Scholar] [CrossRef]
- Doshi, N.; Mitragotri, S. Macrophages Recognize Size and Shape of Their Targets. PLoS ONE 2010, 5, e10051. [Google Scholar] [CrossRef] [PubMed]
- Champion, J.A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. USA 2006, 103, 4930–4934. [Google Scholar] [CrossRef] [PubMed]
- Blaszczak, A.M.; Jalilvand, A.; Hsueh, W.A. Adipocytes, Innate Immunity and Obesity: A Mini-Review. Front. Immunol. 2021, 12, 650768. [Google Scholar] [CrossRef] [PubMed]
- Thiriot, J.D.; Martinez-Martinez, Y.B.; Endsley, J.J.; Torres, A.G. Hacking the host: Exploitation of macrophage polarization by intracellular bacterial pathogens. Pathog. Dis. 2020, 78, ftaa009. [Google Scholar] [CrossRef]
- Chen, Y.W.; Huang, M.Z.; Chen, C.L.; Kuo, C.Y.; Yang, C.Y.; Chiang-Ni, C.; Chen, Y.Y.M.; Hsieh, C.M.; Wu, H.Y.; Kuo, M.L.; et al. PM2.5 impairs macrophage functions to exacerbate pneumococcus-induced pulmonary pathogenesis. Part. Fibre Toxicol. 2020, 17, 37. [Google Scholar] [CrossRef]
- Meng, Z.; Zhang, Q. Damage effects of dust storm PM2.5 on DNA in alveolar macrophages and lung cells of rats. Food Chem. Toxicol. 2007, 45, 1368–1374. [Google Scholar] [CrossRef]
- Migliaccio, C.T.; Kobos, E.; King, Q.O.; Porter, V.; Jessop, F.; Ward, T. Adverse effects of wood smoke PM2.5 exposure on macrophage functions. Inhal. Toxicol. 2013, 25, 67–76. [Google Scholar] [CrossRef]
- Rosales, C.; Uribe-Querol, E. Phagocytosis: A Fundamental Process in Immunity. Biomed. Res. Int. 2017, 2017, 9042851. [Google Scholar] [CrossRef]
- Guerriero, J.L. Macrophages: Their Untold Story in T Cell Activation and Function. Int. Rev. Cell Mol. Biol. 2019, 342, 73–93. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, H.; Yang, T.; Rui, W.; Liu, F.; Zhang, F.; Zhao, Y.; Ding, W. Direct effects of airborne PM2.5 exposure on macrophage polarizations. Biochim. Biophys. Acta Gen. Subj. 2016, 1860, 2835–2843. [Google Scholar] [CrossRef]
- Pacheco, P.; White, D.; Sulchek, T. Effects of Microparticle Size and Fc Density on Macrophage Phagocytosis. PLoS ONE 2013, 8, e60989. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S. Phagocytosis: An Immunobiologic Process. Immunity 2016, 44, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Griffin, F.M.; Griffin, J.A.; Leider, J.E.; Silverstein, S.C. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J. Exp. Med. 1975, 142, 1263–1282. [Google Scholar] [CrossRef] [PubMed]
- Griffin, F.M.; Griffin, J.A.; Silverstein, S.C. Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J. Exp. Med. 1976, 144, 788–809. [Google Scholar] [CrossRef]
- Tollis, S.; Dart, A.E.; Tzircotis, G.; Endres, R.G. The zipper mechanism in phagocytosis: Energetic requirements and variability in phagocytic cup shape. BMC Syst. Biol. 2010, 4, 149. [Google Scholar] [CrossRef]
- Rougerie, P.; Miskolci, V.; Cox, D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: Role and regulation of the actin cytoskeleton. Immunol. Rev. 2013, 256, 222–239. [Google Scholar] [CrossRef]
- Shaw, D.R.; Griffin, F.M. Phagocytosis requires repeated triggering of macrophage phagocytic receptors during particle ingestion. Nature 1981, 289, 409–411. [Google Scholar] [CrossRef]
- Jaumouille, V.; Waterman, C.M. Physical Constraints and Forces Involved in Phagocytosis. Front. Immunol. 2020, 11, 1097. [Google Scholar] [CrossRef]
- Bakalar, M.H.; Joffe, A.M.; Schmid, E.M.; Son, S.; Podolski, M.; Fletcher, D.A. Size-Dependent Segregation Controls Macrophage Phagocytosis of Antibody-Opsonized Targets. Cell 2018, 174, 131–142.e13. [Google Scholar] [CrossRef]
- Michl, J.; Pieczonka, M.M.; Unkeless, J.C.; Silverstein, S.C. Effects of immobilized immune complexes on Fc- and complement-receptor function in resident and thioglycollate-elicited mouse peritoneal macrophages. J. Exp. Med. 1979, 150, 607–621. [Google Scholar] [CrossRef]
- Beningo, K.A.; Wang, Y.L. Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J. Cell Sci. 2002, 115, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Uribe-Querol, E.; Rosales, C. Control of phagocytosis by microbial pathogens. Front. Immunol. 2017, 8, 1368. [Google Scholar] [CrossRef] [PubMed]
- Vorselen, D.; Labitigan, R.L.D.; Theriot, J.A. A mechanical perspective on phagocytic cup formation. Curr. Opin. Cell Biol. 2020, 66, 112–122. [Google Scholar] [CrossRef]
- Simon, S.I.; Schmid-Schönbein, G.W. Biophysical aspects of microsphere engulfment by human neutrophils. Biophys. J. 1988, 53, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, G. Differences in the Mode of Phagocytosis with Fc and C3 Receptors in Macrophages. Scand. J. Immunol. 1977, 6, 797–807. [Google Scholar] [CrossRef]
- Zhang, Y.; Hoppe, A.D.; Swanson, J.A. Coordination of Fc receptor signaling regulates cellular commitment to phagocytosis. Proc. Natl. Acad. Sci. USA 2010, 107, 19332–19337. [Google Scholar] [CrossRef]
- Niedergang, F.; Chavrier, P. Signaling and membrane dynamics during phagocytosis: Many roads lead to the phagos(R)ome. Curr. Opin. Cell Biol. 2004, 16, 422–428. [Google Scholar] [CrossRef]
- Eisentraut, M.; Sabri, A.; Kress, H. The spatial resolution limit of phagocytosis. Biophys. J. 2023, 122, 868–879. [Google Scholar] [CrossRef]
- Ferguson, S.M.; Camilli, P.D. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 2012, 13, 75–88. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, Y. How half-coated janus particles enter cells. J. Am. Chem. Soc. 2013, 135, 19091–19094. [Google Scholar] [CrossRef]
- Horonushi, D.; Furumoto, Y.; Nakata, Y.; Azuma, T.; Yoshida, A.; Yasuda, K. On-Chip Free-Flow Measurement Revealed Possible Depletion of Macrophages by Indigestible PM2.5 within a Few Hours by the Fastest Intervals of Serial Phagocytosis. Micromachines 2023, 14, 206. [Google Scholar] [CrossRef] [PubMed]
- Horonushi, D.; Yoshida, A.; Nakata, Y.; Sentoku, M.; Furumoto, Y.; Azuma, T.; Suzuki, S.; Ando, M.; Yasuda, K. Membrane backtracking at the maximum capacity of nondigestible antigen phagocytosis in macrophages. Biophys. J. 2023, 122, 2707–2726. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.R.; Manoharan, V.N.; Michel, E.; Elsesser, M.T.; Yang, S.M.; Pine, D.J. Colloidal clusters of silica or polymer microspheres. Adv. Mater. 2004, 16, 1204–1208. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ando, M.; Horonushi, D.; Yuki, H.; Kato, S.; Yoshida, A.; Yasuda, K. Spatial Discrimination Limit Analysis of Macrophage Phagocytosis Between Target Antigens and Non-Target Objects Using Microcapillary Manipulation Assay. Micromachines 2024, 15, 1394. https://doi.org/10.3390/mi15111394
Ando M, Horonushi D, Yuki H, Kato S, Yoshida A, Yasuda K. Spatial Discrimination Limit Analysis of Macrophage Phagocytosis Between Target Antigens and Non-Target Objects Using Microcapillary Manipulation Assay. Micromachines. 2024; 15(11):1394. https://doi.org/10.3390/mi15111394
Chicago/Turabian StyleAndo, Maiha, Dan Horonushi, Haruka Yuki, Shinya Kato, Amane Yoshida, and Kenji Yasuda. 2024. "Spatial Discrimination Limit Analysis of Macrophage Phagocytosis Between Target Antigens and Non-Target Objects Using Microcapillary Manipulation Assay" Micromachines 15, no. 11: 1394. https://doi.org/10.3390/mi15111394
APA StyleAndo, M., Horonushi, D., Yuki, H., Kato, S., Yoshida, A., & Yasuda, K. (2024). Spatial Discrimination Limit Analysis of Macrophage Phagocytosis Between Target Antigens and Non-Target Objects Using Microcapillary Manipulation Assay. Micromachines, 15(11), 1394. https://doi.org/10.3390/mi15111394