A Polycarbonate-Assisted Transfer Method for van der Waals Contacts to Magnetic Two-Dimensional Materials
Abstract
:1. Introduction
2. Methods
2.1. Device Fabrication by Using the PC-Assisted Transfer Method
2.2. Device Fabrication by Using Conventional Lithography Method
2.3. Transport Measurement
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shim, J.; Park, H.-Y.; Kang, D.-H.; Kim, J.-O.; Jo, S.-H.; Park, Y.; Park, J.-H. Electronic and Optoelectronic Devices Based on Two-Dimensional Materials: From Fabrication to Application. Adv. Electron. Mater. 2017, 3, 1600364. [Google Scholar] [CrossRef]
- Liang, S.-J.; Cheng, B.; Cui, X.; Miao, F. Van Der Waals Heterostructures for High-Performance Device Applications: Challenges and Opportunities. Adv. Mater. 2020, 32, 1903800. [Google Scholar] [CrossRef] [PubMed]
- Ningrum, V.P.; Liu, B.; Wang, W.; Yin, Y.; Cao, Y.; Zha, C.; Xie, H.; Jiang, X.; Sun, Y.; Qin, S.; et al. Recent Advances in Two-Dimensional Magnets: Physics and Devices towards Spintronic Applications. Research 2020, 2020, 1768918. [Google Scholar] [CrossRef] [PubMed]
- Mi, M.; Xiao, H.; Yu, L.; Zhang, Y.; Wang, Y.; Cao, Q.; Wang, Y. Two-Dimensional Magnetic Materials for Spintronic Devices. Mater. Today Nano 2023, 24, 100408. [Google Scholar] [CrossRef]
- Jiang, S.; Li, L.; Wang, Z.; Shan, J.; Mak, K.F. Spin Tunnel Field-Effect Transistors Based on Two-Dimensional van Der Waals Heterostructures. Nat. Electron. 2019, 2, 159–163. [Google Scholar] [CrossRef]
- Dirnberger, F.; Quan, J.; Bushati, R.; Diederich, G.M.; Florian, M.; Klein, J.; Mosina, K.; Sofer, Z.; Xu, X.; Kamra, A.; et al. Magneto-Optics in a van Der Waals Magnet Tuned by Self-Hybridized Polaritons. Nature 2023, 620, 533–537. [Google Scholar] [CrossRef]
- Sun, Y.; Meng, F.; Lee, C.; Soll, A.; Zhang, H.; Ramesh, R.; Yao, J.; Sofer, Z.; Orenstein, J. Dipolar Spin Wave Packet Transport in a van Der Waals Antiferromagnet. Nat. Phys. 2024, 20, 794–800. [Google Scholar] [CrossRef]
- Chen, Y.; Samanta, K.; Shahed, N.A.; Zhang, H.; Fang, C.; Ernst, A.; Tsymbal, E.Y.; Parkin, S.S.P. Twist-Assisted All-Antiferromagnetic Tunnel Junction in the Atomic Limit. Nature 2024, 632, 1045–1051. [Google Scholar] [CrossRef]
- Boix-Constant, C.; Jenkins, S.; Rama-Eiroa, R.; Santos, E.J.G.; Mañas-Valero, S.; Coronado, E. Multistep Magnetization Switching in Orthogonally Twisted Ferromagnetic Monolayers. Nat. Mater. 2024, 23, 212–218. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Qureshi, N.A.; Hussain, G. Recent Advancements in 2D-Materials Interface Based Magnetic Junctions for Spintronics. J. Magn. Magn. Mater. 2018, 457, 110–125. [Google Scholar] [CrossRef]
- Spicer, W.E.; Chye, P.W.; Garner, C.M.; Lindau, I.; Pianetta, P. The Surface Electronic Structure of 3–5 Compounds and the Mechanism of Fermi Level Pinning by Oxygen (Passivation) and Metals (Schottky Barriers). Surf. Sci. 1979, 86, 763–788. [Google Scholar] [CrossRef]
- Zan, R.; Ramasse, Q.M.; Jalil, R.; Georgiou, T.; Bangert, U.; Novoselov, K.S. Control of Radiation Damage in MoS2 by Graphene Encapsulation. ACS Nano 2013, 7, 10167–10174. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, J.; Zhu, E.; Liao, L.; Lee, S.-J.; Ding, M.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. Approaching the Schottky–Mott Limit in van Der Waals Metal–Semiconductor Junctions. Nature 2018, 557, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Kong, L.; Li, Q.; He, C.; Ren, L.; Tao, Q.; Yang, X.; Lin, J.; Zhao, B.; Li, Z.; et al. Transferred van Der Waals Metal Electrodes for Sub-1-Nm MoS2 Vertical Transistors. Nat. Electron. 2021, 4, 342–347. [Google Scholar] [CrossRef]
- Liu, G.; Tian, Z.; Yang, Z.; Xue, Z.; Zhang, M.; Hu, X.; Wang, Y.; Yang, Y.; Chu, P.K.; Mei, Y.; et al. Graphene-Assisted Metal Transfer Printing for Wafer-Scale Integration of Metal Electrodes and Two-Dimensional Materials. Nat. Electron. 2022, 5, 275–280. [Google Scholar] [CrossRef]
- Wang, L.; Wang, P.; Huang, J.; Peng, B.; Jia, C.; Qian, Q.; Zhou, J.; Xu, D.; Huang, Y.; Duan, X. A General One-Step Plug-and-Probe Approach to Top-Gated Transistors for Rapidly Probing Delicate Electronic Materials. Nat. Nanotechnol. 2022, 17, 1206–1213. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Chen, J.; Liu, Z.; Gao, Z.; Chang, X.; Du, Y.; Jia, C.; Fu, H.; Luo, F.; et al. Transferred Polymer-Encapsulated Metal Electrodes for Electrical Transport Measurements on Ultrathin Air-Sensitive Crystals. Small Methods 2023, 7, 2300177. [Google Scholar] [CrossRef]
- Zomer, P.J.; Guimarães, M.H.D.; Brant, J.C.; Tombros, N.; van Wees, B.J. Fast Pick up Technique for High Quality Heterostructures of Bilayer Graphene and Hexagonal Boron Nitride. Appl. Phys. Lett. 2014, 105, 013101. [Google Scholar] [CrossRef]
- McGuire, M.A.; Dixit, H.; Cooper, V.R.; Sales, B.C. Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3. Chem. Mater. 2015, 27, 612–620. [Google Scholar] [CrossRef]
- Lin, G.T.; Zhuang, H.L.; Luo, X.; Liu, B.J.; Chen, F.C.; Yan, J.; Sun, Y.; Zhou, J.; Lu, W.J.; Tong, P.; et al. Tricritical Behavior of the Two-Dimensional Intrinsically Ferromagnetic Semiconductor CrGeTe3. Phys. Rev. B 2017, 95, 245212. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, Y.; Song, Y.; Zhang, J.; Wang, N.Z.; Sun, Z.; Yi, Y.; Wu, Y.Z.; Wu, S.; Zhu, J.; et al. Gate-Tunable Room-Temperature Ferromagnetism in Two-Dimensional Fe3GeTe2. Nature 2018, 563, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yuan, X.; Zou, Y.; Sheng, Y.; Huang, C.; Zhang, E.; Ling, J.; Liu, Y.; Wang, W.; Zhang, C.; et al. Wafer-Scale Two-Dimensional Ferromagnetic Fe3GeTe2 Thin Films Grown by Molecular Beam Epitaxy. NPJ 2D Mater. Appl. 2017, 1, 30. [Google Scholar] [CrossRef]
- Telford, E.J.; Dismukes, A.H.; Lee, K.; Cheng, M.; Wieteska, A.; Bartholomew, A.K.; Chen, Y.-S.; Xu, X.; Pasupathy, A.N.; Zhu, X.; et al. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the van Der Waals Semiconductor CrSBr. Adv. Mater. 2020, 32, 2003240. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.P.; Lee, K.; Cenker, J.; Xie, K.; Dismukes, A.H.; Telford, E.J.; Fonseca, J.; Sivakumar, S.; Dean, C.; Cao, T.; et al. Interlayer Electronic Coupling on Demand in a 2D Magnetic Semiconductor. Nat. Mater. 2021, 20, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Telford, E.J.; Dismukes, A.H.; Dudley, R.L.; Wiscons, R.A.; Lee, K.; Chica, D.G.; Ziebel, M.E.; Han, M.-G.; Yu, J.; Shabani, S.; et al. Coupling between Magnetic Order and Charge Transport in a Two-Dimensional Magnetic Semiconductor. Nat. Mater. 2022, 21, 754–760. [Google Scholar] [CrossRef]
- Boix-Constant, C.; Mañas-Valero, S.; Ruiz, A.M.; Rybakov, A.; Konieczny, K.A.; Pillet, S.; Baldoví, J.J.; Coronado, E. Probing the Spin Dimensionality in Single-Layer CrSBr Van Der Waals Heterostructures by Magneto-Transport Measurements. Adv. Mater. 2022, 34, 2204940. [Google Scholar] [CrossRef]
- Tabataba-Vakili, F.; Nguyen, H.P.G.; Rupp, A.; Mosina, K.; Papavasileiou, A.; Watanabe, K.; Taniguchi, T.; Maletinsky, P.; Glazov, M.M.; Sofer, Z.; et al. Doping-Control of Excitons and Magnetism in Few-Layer CrSBr. Nat. Commun. 2024, 15, 4735. [Google Scholar] [CrossRef]
- Sun, Z.; Hong, C.; Chen, Y.; Sheng, Z.; Wu, S.; Wang, Z.; Liang, B.; Liu, W.-T.; Yuan, Z.; Wu, Y.; et al. Resolving and Routing the Magnetic Polymorphs in 2D Layered Antiferromagnet. arXiv 2024. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, C.; Li, Z.; Fu, J.; Tian, J.; Ouyang, Z.; Yang, Y.; Shao, X.; Han, Y.; Qiao, Z.; et al. Reliable Wafer-Scale Integration of Two-Dimensional Materials and Metal Electrodes with van Der Waals Contacts. Nat. Commun. 2024, 15, 4619. [Google Scholar] [CrossRef]
- Kong, L.; Wu, R.; Chen, Y.; Huangfu, Y.; Liu, L.; Li, W.; Lu, D.; Tao, Q.; Song, W.; Li, W.; et al. Wafer-Scale and Universal van Der Waals Metal Semiconductor Contact. Nat. Commun. 2023, 14, 1014. [Google Scholar] [CrossRef]
- Kwon, G.; Choi, Y.-H.; Lee, H.; Kim, H.-S.; Jeong, J.; Jeong, K.; Baik, M.; Kwon, H.; Ahn, J.; Lee, E.; et al. Interaction- and Defect-Free van Der Waals Contacts between Metals and Two-Dimensional Semiconductors. Nat. Electron. 2022, 5, 241–247. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Zhao, G.; Zhao, Y.; Xiao, J.; Wang, L.; Liu, J.; Song, W.; Lan, Q.; Zhao, T.; Huang, H.; et al. A Polycarbonate-Assisted Transfer Method for van der Waals Contacts to Magnetic Two-Dimensional Materials. Micromachines 2024, 15, 1401. https://doi.org/10.3390/mi15111401
Yang K, Zhao G, Zhao Y, Xiao J, Wang L, Liu J, Song W, Lan Q, Zhao T, Huang H, et al. A Polycarbonate-Assisted Transfer Method for van der Waals Contacts to Magnetic Two-Dimensional Materials. Micromachines. 2024; 15(11):1401. https://doi.org/10.3390/mi15111401
Chicago/Turabian StyleYang, Kunlin, Guorui Zhao, Yibin Zhao, Jie Xiao, Le Wang, Jiaqi Liu, Wenqing Song, Qing Lan, Tuoyu Zhao, Hai Huang, and et al. 2024. "A Polycarbonate-Assisted Transfer Method for van der Waals Contacts to Magnetic Two-Dimensional Materials" Micromachines 15, no. 11: 1401. https://doi.org/10.3390/mi15111401
APA StyleYang, K., Zhao, G., Zhao, Y., Xiao, J., Wang, L., Liu, J., Song, W., Lan, Q., Zhao, T., Huang, H., Mei, J. -W., & Shi, W. (2024). A Polycarbonate-Assisted Transfer Method for van der Waals Contacts to Magnetic Two-Dimensional Materials. Micromachines, 15(11), 1401. https://doi.org/10.3390/mi15111401