Fully Integrated MEMS Micropump and Miniaturized Mass Flow Sensor as Basic Components for a Microdosing System †
Abstract
:1. Introduction
2. MEMS Micropump
2.1. The Design and Fabrication of the MEMS Micropump
- The complexity of the structure and the hereof resulting large finite element model;
- The bidirectional multi-energy domain coupling between the mechanical, fluidic, and electrical domains;
- The dynamically changing geometry, resulting in large mesh deformation in the fluidic and electrical energy domains;
- The mechanical contact between the pump and the valve membrane and their respective electrodes.
2.2. The Characterization Setup for the MEMS Micropumps
3. MEMS-Based Mass Flow Sensor
3.1. The Design and Fabrication of the MEMS-Based Mass Flow Sensor
3.2. Characterization Setup for the MEMS-Based Mass Flow Sensor
4. Results
4.1. Fully Integrated Micropump
4.2. MEMS-Based Mass Flow Sensor
5. Discussion and Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huber, J.; Ambs, A.; Rademacher, S.; Wöllenstein, J. A Selective, Miniaturized, Low-cost Detection Element for a Photoacoustic CO2 Sensor for Room Climate Monitoring. Procedia Eng. 2014, 87, 1168–1171. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, K.K.; Kupnik, M.; Khuri-Yakub, B.T. Functionalization layers for CO2 sensing using capacitive micromachined ultrasonic transducers. Sens. Actuators B Chem. 2012, 174, 87–93. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Rajamani, R.; Smith, C.S.; McGee, K.A.; Mann, K.R.; Yamashita, N. Carbon nanotube-coated surface acoustic wave sensor for carbon dioxide sensing. Sens. Actuators B Chem. 2008, 132, 296–304. [Google Scholar] [CrossRef]
- Seidl, M. Integrierte, Siliziumbasierte, Miniaturisierte Pumpen und Strömungssensoren für Mobile Mikrofluidische Systeme. Ph.D. Thesis, Technische Universität München, München, Germany, 2024. [Google Scholar]
- Nguyen, N.-T.; Huang, X.Y.; Chuan, T. MEMS-micropumps: A review. J. Fluids Eng.-Trans. ASME 2002, 124, 384–392. [Google Scholar] [CrossRef]
- Laser, D.J.; Santiago, J.G. A review of micropumps. J. Micromech. Microeng. 2004, 14, R35–R64. [Google Scholar] [CrossRef]
- Iverson, B.D.; Garimella, S.V. Recent advances in microscale pumping technologies: A review and evaluation. Microfluid Nanofluid 2008, 5, 145–174. [Google Scholar] [CrossRef]
- Amirouche, F.; Zhou, Y.; Johnson, T. Current Micropump Technologies and their Biomedical Applications. Microsyst. Technol. 2009, 15, 647–666. [Google Scholar] [CrossRef]
- Grzebyk, T. MEMS Vacuum Pumps. J. Microelectromech. Syst. 2017, 26, 705–717. [Google Scholar] [CrossRef]
- Richter, M.; Leistner, H.; Congar, Y.; Drost, A.; Kibler, S.; Röhl, S.; Wackerle, M. Piezoelektrisch angetriebene Silizium Mikropumpe der Baugröße 3,5 × 3,5 × 0,6 mm3. In Proceedings of the MikroSystemTechnik Kongress, Berlin, Germany, 28–30 October 2019; pp. 382–385. [Google Scholar]
- Bhuiyan, N.H.; Hong, J.H.; Uddin, M.J.; Shim, J.S. Artificial Intelligence-Controlled Microfluidic Device for Fluid Automation and Bubble Removal of Immunoassay Operated by a Smartphone. Anal. Chem. 2022, 94, 3872–3880. [Google Scholar] [CrossRef]
- Luo, X.; Yang, L.; Cui, Y. Micropumps: Mechanisms, fabrication, and biomedical applications. Sens. Actuators A Phys. 2023, 363, 114732. [Google Scholar] [CrossRef]
- Bußmann, A.B.; Grünerbel, L.M.; Durasiewicz, C.P.; Thalhofer, T.A.; Wille, A.; Richter, M. Microdosing for drug delivery application—A review. Sens. Actuators A Phys. 2021, 330, 112820. [Google Scholar] [CrossRef]
- Surendran, N.; Durasiewicz, C.P.; Hoffmann, T.; Wille, A.; Bussmann, A.B.; Richter, M. Microfluidic Delivery of High Viscosity Liquids Using Piezoelectric Micropumps for Subcutaneous Drug Infusion Applications. IEEE Open J. Eng. Med. Biol. 2024, 5, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Cheng, C.H.; Lin, Y.C. Analysis and experiment of a novel actuating design with a shear mode PZT actuator for microfluidic application. Sens. Actuators A Phys. 2007, 135, 1–9. [Google Scholar] [CrossRef]
- Doll, A.; Heinrichs, M.; Goldschmidtboeing, F.; Schrag, H.-J.; Hopt, U.T.; Woias, P. A high performance bidirectional micropump for a novel artificial sphincter system. Sens. Actuators A Phys. 2006, 130–131, 445–453. [Google Scholar] [CrossRef]
- Feng, G.-H.; Kim, E.S. Piezoelectrically actuated dome-shaped diaphragm micropump. J. Microelectromech. Syst. 2005, 14, 192–199. [Google Scholar] [CrossRef]
- Fraunhofer EMFT. Mikromembranpumpen-Portfolio der Fraunhofer EMFT. Available online: https://www.emft.fraunhofer.de/de/kompetenzen/mikropumpen.html (accessed on 5 October 2016).
- Fukue, T.; Hirose, K.; Terao, H. Cooling performance of impinging jet from piezoelectric micro blower mounted in narrow flow passage. In Proceedings of the 2015 International Conference on Electronic Packaging and iMAPS All Asia Conference (ICEP-IAAC), Kyoto, Japan, 14–17 April 2015; pp. 605–610, ISBN 978-4-9040-9013-8. [Google Scholar]
- Herz, M.; Horsch, D.; Wachutka, G.; Lueth, T.C.; Richter, M. Design of ideal circular bending actuators for high performance micropumps. Sens. Actuators A Phys. 2010, 163, 231–239. [Google Scholar] [CrossRef]
- Fukue, T.; Matsuura, Y.; Hirose, K.; Terao, H. Evaluation of cooling performance of a piezoelectric micro blower in narrow flow passage. In Proceedings of the 2014 International Conference on Electronics Packaging (ICEP), Toyama, Japan, 23–25 April 2014; pp. 69–73, ISBN 978-4-904090-11-4. [Google Scholar]
- Lemke, T.; Biancuzzi, G.; Feth, H.; Huber, J.; Goldschmidtböing, F.; Woias, P. Fabrication of normally-closed bidirectional micropumps in silicon–polymer technology featuring photopatternable silicone valve lips. Sens. Actuators A Phys. 2011, 168, 213–222. [Google Scholar] [CrossRef]
- Ma, H.K.; Su, H.C.; Wu, J.Y. Study of an innovative one-sided actuating piezoelectric valveless micropump with a secondary chamber. Sens. Actuators A Phys. 2011, 171, 297–305. [Google Scholar] [CrossRef]
- de Luca, L.; Girfoglio, M.; Chiatto, M.; Coppola, G. Scaling properties of resonant cavities driven by piezo-electric actuators. Sens. Actuators A Phys. 2016, 247, 465–474. [Google Scholar] [CrossRef]
- Richter, M.; Prak, A.; Naundorf, J.; Eberl, M.; Leeuwis, H.; Woias, P.; Steckenborn, A. A chemical microanalysis system as a microfluid system demonstrator. In Transducers 97, Digest of Technical Papers. Proceedings of the International Solid State Sensors and Actuators Conference (Transducers’97), Chicago, IL, USA, 19 June 1997; Wise, K.D., Ed.; IEEE Service Center: Piscataway, NJ, USA, 1997; Volume 1, pp. 303–306. ISBN 0-7803-3829-4. [Google Scholar]
- Richter, M.; Wackerle, M.; Congar, Y.; Drost, A.; Häfner, J.; Röhl, S.; Kibler, S.; Kruckow, J.; Kutter, C. Miniaturisierung von Mikromembranpumpen für die Integration in Mobilfunkgeräte. In Proceedings of the MikroSystemTechnik Kongress, Munich, Germany, 23–25 October 2017; pp. 147–150, ISBN 978-3-8007-4491-6. [Google Scholar]
- Shabanian, A.; Goldschmidtboeing, F.; Dhananjaya, C.; Gowda, H.B.; Baeumker, E.; Woias, P. Low fluidic resistance valves utilizing buckling actuators. In Proceedings of the MikroSystemTechnik 2017 Congress, Munich, Germany, 23–25 October 2017; pp. 1–4. [Google Scholar]
- Yang, H.; Tsai, T.-H.; Hu, C.-C. Portable valve-less peristaltic micropump design and fabrication. In Proceedings of the 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS, Nice, France, 9–11 April 2008; pp. 273–278. [Google Scholar]
- Yoon, J.S.; Choi, J.W.; Lee, I.H.; Kim, M.S. A valveless micropump for bidirectional applications. Sens. Actuators A Phys. 2007, 135, 833–838. [Google Scholar] [CrossRef]
- Astle, A.; Bernal, L.P.; Kim, H.; Najafi, K.; Washabaugh, P.D. Theoretical and Experimental Performance of a High Frequency Micropump. In Proceedings of the ASME 2005 International Mechanical Engineering Congress and Exposition, Orlando, FL, USA, 5–11 November 2005; pp. 711–720, ISBN 0-7918-4224-X. [Google Scholar]
- Kim, H.; Astle, A.A.; Najafi, K.; Bernal, L.P.; Washabaugh, P.D. A fully integrated high-efficiency peristaltic 18-stage gas micropump with active microvalves. In Proceedings of the 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), Hyogo, Japan, 21–25 January 2007; pp. 131–134. [Google Scholar]
- Leistner, H.; Anheuer, D.; Bosetti, G.; Schrag, G.; Richter, M. Modeling and Manufacturing of an Electrostatically Driven Actuator for Micropumps. In Proceedings of the MikroSystemTechnik Congress 2021, Stuttgart-Ludwigsburg, Germany, 8–10 November 2021; pp. 1–4. [Google Scholar]
- Salim, M.S.; Abd Malek, M.F.; Heng, R.; Juni, K.M.; Sabri, N. Capacitive Micromachined Ultrasonic Transducers: Technology and Application. J. Med. Ultrasound 2012, 20, 8–31. [Google Scholar] [CrossRef]
- Bodén, R.; Lehto, M.; Simu, U.; Thornell, G.; Hjort, K.; Schweitz, J.-Å. A polymeric paraffin actuated high-pressure micropump. Sens. Actuators A Phys. 2006, 127, 88–93. [Google Scholar] [CrossRef]
- Yamahata, C.; Chastellain, M.; Parashar, V.K.; Petri, A.; Hofmann, H.; Gijs, M. Plastic micropump with ferrofluidic actuation. J. Microelectromech. Syst. 2005, 14, 96–102. [Google Scholar] [CrossRef]
- Wei, W.; Guo, S. A developed microfluidic system with model reference adaptive control. In Proceedings of the 2012 IEEE International Conference on Mechatronics and Automation (ICMA), Chengdu, China, 5–8 August 2012; pp. 403–408, ISBN 978-1-4673-1278-3. [Google Scholar]
- Yamahata, C.; Lacharme, F.; Burri, Y.; Gijs, M.A. A ball valve micropump in glass fabricated by powder blasting. Sens. Actuators B Chem. 2005, 110, 1–7. [Google Scholar] [CrossRef]
- Cantwell, M.L.; Amirouche, F.; Citerin, J. Low-cost high performance disposable micropump for fluidic delivery applications. Sens. Actuators A Phys. 2011, 168, 187–194. [Google Scholar] [CrossRef]
- Park, J.W.; Yang, J.-H.; Kim, H. A large-deflection high-force micro electromagnetic hydraulic latex membrane actuator for fluid manipulation in micro channels. In Proceedings of the 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 23–27 January 2011; pp. 1209–1212. [Google Scholar]
- Dearing, S.S.; Morrison, J.F.; Iannucci, L. Electro-active polymer (EAP) “dimple” actuators for flow control: Design and characterisation. Sens. Actuators A Phys. 2010, 157, 210–218. [Google Scholar] [CrossRef]
- Xu, T.-B.; Su, J. Development, characterization, and theoretical evaluation of electroactive polymer-based micropump diaphragm. Sens. Actuators A Phys. 2005, 121, 267–274. [Google Scholar] [CrossRef]
- Benard, W.L.; Kahn, H.; Heuer, A.H.; Huff, M.A. Thin-film shape-memory alloy actuated micropumps. J. Microelectromech. Syst. 1998, 7, 245–251. [Google Scholar] [CrossRef]
- van Dau, T.; Dinh, T.X.; Sugiyama, S. A MEMS-based silicon micropump with intersecting channels and integrated hotwires. J. Micromech. Microeng. 2009, 19, 125016. [Google Scholar] [CrossRef]
- Seidl, M.; Schrag, G. Fully Integrated Micropump and Mass Flow Sensor Based on a Standard MEMS Technology Platform. In Proceedings of the 5th Conference on MicroFluidic Handling Systems (MFHS), Munich, Germany, 21–23 February 2024. [Google Scholar]
- Hölzl, W.; Seidl, M.; Schrag, G. Fully-Coupled Transient Modeling of Highly Miniaturized Electrostatic Pull-In Driven Micropumps. In Proceedings of the 2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Graz, Austria, 16–19 April 2023; pp. 1–11, ISBN 979-8-3503-4597-1. [Google Scholar]
- Seidl, M.; Schrag, G.; Klein, W.; Vobl, M.; Krumbein, U. Design of a Micropump Based on an Industrial Microphone Manufacturing Process. In Proceedings of the 2019 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), Paris, France, 12–15 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. ISBN 978-1-7281-3288-4. [Google Scholar]
- Dehe, A.; Wurzer, M.; Fuldner, M.; Krumbein, U. Design of a poly silicon MEMS microphone for high signal-to-noise ratio. In Proceedings of the ESSDERC 2013–43rd European Solid-State Device Research Conference, Bucharest, Romania, 16–20 September 2013; pp. 292–295, ISBN 978-1-4799-0649-9. [Google Scholar]
- Seidl, M.; Schrag, G.; Tumpold, D.; Klein, W. Miniaturisierung hochsensitiver, hitzdrahtbasierter Massenflusssensoren mit Hilfe von Halbleiterfertigungstechnologie. In Proceedings of the MikroSystemTechnik Kongress, Stuttgart-Ludwigsburg, Germany, 8–10 November 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seidl, M.; Schrag, G. Fully Integrated MEMS Micropump and Miniaturized Mass Flow Sensor as Basic Components for a Microdosing System. Micromachines 2024, 15, 1404. https://doi.org/10.3390/mi15121404
Seidl M, Schrag G. Fully Integrated MEMS Micropump and Miniaturized Mass Flow Sensor as Basic Components for a Microdosing System. Micromachines. 2024; 15(12):1404. https://doi.org/10.3390/mi15121404
Chicago/Turabian StyleSeidl, Martin, and Gabriele Schrag. 2024. "Fully Integrated MEMS Micropump and Miniaturized Mass Flow Sensor as Basic Components for a Microdosing System" Micromachines 15, no. 12: 1404. https://doi.org/10.3390/mi15121404
APA StyleSeidl, M., & Schrag, G. (2024). Fully Integrated MEMS Micropump and Miniaturized Mass Flow Sensor as Basic Components for a Microdosing System. Micromachines, 15(12), 1404. https://doi.org/10.3390/mi15121404