A High-Precision Temperature Compensation Method for TMR Weak Current Sensors Based on FPGA
Abstract
:1. Introduction
2. Preliminary Principle
2.1. Principle of TMR Current Sensor
2.2. Temperature Characteristics
3. Temperature Compensation Theory
3.1. Mathematical Model
3.2. Compensation Algorithm
- S(t) is a piecewise function, and within each subinterval, it is a cubic function;
- The interpolation conditions are met, ensuring equal function values at adjacent subinterval junctions;
- The function has the same first and second derivatives at the connecting points of adjacent subintervals.
3.3. System Structure
4. Implementation
4.1. Hardware Circuit
4.2. Temperature Compensation Process
5. Experimental Verification and Analysis
5.1. Compensation Effect Test
5.2. Continuous Temperature Variation Test
5.3. Alternating Current Test
5.4. Comparison with Other Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Hou, L.; Liang, K.; Zhang, B. Testing and Evaluation of the Impact Sensor Networks for Power Distribution and Utilization in Smart Grid. In Proceedings of the 2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI), Beijing, China, 20–21 October 2016. [Google Scholar]
- Abrahamsen, F.E.; Ai, Y.; Cheffena, M. Communication Technologies for Smart Grid: A Comprehensive Survey. Sensors 2021, 21, 8087. [Google Scholar] [CrossRef] [PubMed]
- Dorji, S.; Stonier, A.A.; Peter, G.; Kuppusamy, R.; Teekaraman, Y. An Extensive Critique on Smart Grid Technologies: Recent Advancements, Key Challenges, and Future Directions. Technologies 2023, 11, 81. [Google Scholar] [CrossRef]
- Paplinski, P.; Wankowicz, J. Application of leakage current parameters for technical diagnostics of surge arresters. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3458–3465. [Google Scholar] [CrossRef]
- Fu, Y.; Li, T.; Li, Y.; Hu, X.; Jiang, X.; Dong, Y.; Zhao, P.; Yu, C.; Wang, J. Research on Field Source Characteristics of Leakage Current of Arrester Based on TMR Sensor. Sensors 2023, 23, 3830. [Google Scholar] [CrossRef]
- Gouda, O.E.; Darwish, M.M.F.; Mahmoud, K.; Lehtonen, M.; Elkhodragy, T.M. Pollution Severity Monitoring of High Voltage Transmission Line Insulators Using Wireless Device Based on Leakage Current Bursts. IEEE Access 2022, 10, 53713–53723. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Cao, B.; Guo, C. Influence of Partial Arc on Leakage Current and Surface Conductivity of Insulators. High Volt. Eng. 2019, 45, 1624–1629. [Google Scholar]
- Werneck, M.M.; Santos, D.M.; De Nazare, F.V.B.; Da Silva Neto, J.L.; Allil, R.C.; Ribeiro, B.A.; Carvalho, C.C.; Lancelotti, F. Detection and monitoring of leakage currents in distribution line insulators. In Proceedings of the 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Montevideo, Uruguay, 12–15 May 2014. [Google Scholar]
- Ramirez, I.; Hernandez, R.; Montoya, G. Measurement of leakage current for monitoring the performance of outdoor insulators in polluted environments. IEEE Electr. Insul. Mag. 2012, 28, 29–34. [Google Scholar] [CrossRef]
- Li, P.; Tian, B.; Li, L.; Wang, Z.; Lv, Q.; Zhou, K.; Xu, C.; Liu, Z.; Yin, X.; Zhang, J. A Contactless Current Sensor Based on TMR Chips. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, J.; Du, Y.; He, J.; Wang, L. A preliminary study of a Current transformer based on TMR sensor. In Proceedings of the 6th International Beam Instrumentation Conference, Grand Rapids, MI, USA, 20–24 August 2017. [Google Scholar]
- Vidal, E.G.; Muñoz, D.R.; Arias, S.I.R.; Moreno, J.S.; Cardoso, S.; Ferreira, R.; Freitas, P. Electronic Energy Meter Based on a Tunnel Magnetoresistive Effect (TMR) Current Sensor. Materials 2017, 10, 1134. [Google Scholar] [CrossRef]
- Kaczmarek, M.; Stano, E. Challenges of Accurate Measurement of Distorted Current and Voltage in the Power Grid by Conventional Instrument Transformers. Energies 2023, 16, 2648. [Google Scholar] [CrossRef]
- Amirov, S.F.; Kamilovna Babanazarova, N. Mathematical models of the new remote transformer current transducers. IOP Conf. Ser. Earth Environ. Sci. 2021, 808, 012001. [Google Scholar] [CrossRef]
- Shafiq, M.; Stewart, B.G.; Hussain, G.A.; Hassan, W.; Choudhary, M.; Palo, I. Design and applications of Rogowski coil sensors for power system measurements: A review. Measurement 2022, 203, 112014. [Google Scholar] [CrossRef]
- Nanyan, A.N.; Isa, M.; Hamid, H.A.; Hafizi Rohani, M.N.K.; Ismail, B. The Rogowski Coil Sensor in High Current Application: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 318, 012054. [Google Scholar] [CrossRef]
- Sotirov, S.I.; Tokmakov, D.M. Wireless Current Measurement System Based on Integrated Fluxgate Magnetic Sensor for Isolated Current Sensing. In Proceedings of the 2019 X National Conference with International Participation (ELECTRONICA), Sofia, Bulgaria, 16–17 May 2019. [Google Scholar]
- Yang, Y.; Xu, W.; Chen, G.; Jin, Z.; Wang, D.; Mai, Z.; Xing, G.; Chen, J. MEMS Fluxgate Sensor Based on Liquid Casting. Micromachines 2023, 14, 2159. [Google Scholar] [CrossRef] [PubMed]
- Keil, M.; Janschitz, J.G.; Motz, M. A Hall effect magnetic sensor with ratiometric output, utilizing a self-regulating chopped amplifier for compensation of offset, temperature and lifetime drift effects. In Proceedings of the 2022 Austrochip Workshop on Microelectronics (Austrochip), Villach, Austria, 11 October 2022. [Google Scholar]
- Entler, S.; Duran, I.; Kovarik, K.; Sladek, P.; Grover, O.; Vilemova, M.; Najman, D.; Kohout, M.; Sebek, J.; Vyborny, K.; et al. Temperature dependence of the Hall coefficient of sensitive layer materials considered for DEMO Hall sensors. Fusion Eng. Des. 2020, 153, 111454. [Google Scholar] [CrossRef]
- Crescentini, M.; Syeda, S.F.; Gibiino, G.P. Hall-Effect Current Sensors: Principles of Operation and Implementation Techniques. IEEE Sens. J. 2022, 22, 10137–10151. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, J.; Ouyang, Y.; Deng, Y.; Zhao, G.; He, J.; Wang, S.X. A Self-Sustained Current Sensor for Smart Grid Application. IEEE Trans. Ind. Electron. 2021, 68, 12810–12820. [Google Scholar] [CrossRef]
- Spinelli, A.S.; Minotti, P.; Laghi, G.; Langfelder, G.; Lacaita, A.L.; Paci, D. Simple Model for the Performance of Realistic Amr Magnetic Field Sensors. In Proceedings of the 2015 Transducers—2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, AK, USA, 21–25 June 2015. [Google Scholar]
- Mușuroi, C.; Oproiu, M.; Volmer, M.; Neamtu, J.; Avram, M.; Helerea, E. Low Field Optimization of a Non-Contacting High-Sensitivity GMR-Based DC/AC Current Sensor. Sensors 2021, 21, 2564. [Google Scholar] [CrossRef]
- Borole, U.P.; Khan, J.; Barshilia, H.C.; Chowdhury, P. Design, fabrication, and characterization of giant magnetoresistance (GMR) based open-loop current sensor with U-shaped current carrying conductor. Sens. Actuators A Phys. 2021, 332, 113103. [Google Scholar] [CrossRef]
- Ouyang, Y.; Wang, Z.; Zhao, G.; Hu, J.; Ji, S.; He, J.; Wang, S.X. Current sensors based on GMR effect for smart grid applications. Sens. Actuators A Phys. 2019, 294, 8–16. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Z.; Liu, Y.; Wang, L. Correction Method for Temperature Drift and Geomagnetic Field of TMR Current Sensor Based on Improved Deep Belief Network. J. Tianjin Univ. (Sci. Technol.) 2021, 54, 875–880. [Google Scholar]
- Lei, M.; Peng, T.; Zhou, F.; Yu, J.; Liang, S.; Liu, J.; Li, L. Optimal design and implementation of tunnelling magnetoresistance based small current sensor with temperature compensation. Energy Rep. 2022, 8, 137–146. [Google Scholar] [CrossRef]
- Ramírez-Muñoz, D.; García-Gil, R.; Cardoso, S.; Freitas, P. Characterization of Magnetoresistive Shunts and Its Sensitivity Temperature Compensation. Sensors 2024, 24, 3047. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xiao, X.; Gu, Y.; Li, Y. Research on Closed-Loop TMR Current Sensor with Temperature Compensation Based on Reference Magnetic Field. In Proceedings of the 2023 3rd International Conference on Energy, Power and Electrical Engineering (EPEE), Wuhan, China, 15–17 September 2023. [Google Scholar]
- Li, J.; Pan, F.; Li, J.; Ji, Y.; Song, H.; Wang, B. Research on TMR Current Transducer with Temperature Compensation Based on Reference Magnetic Field. IEEE Access 2023, 11, 121828–121834. [Google Scholar] [CrossRef]
- Teng, Z.; Zhu, H.; Bai, R.; Qian, Z. A Temperature Compensation Circuit System of GMR Sensor. Electron. Sci. Technol. 2017, 30, 17–20, 24. [Google Scholar]
- Yang, Y.; Liu, J.; Liu, R.; Tong, J.; Wang, X.; Yang, Z. Giant Magnetoresistance Current Sensor Temperature Characteristic. Comput. Eng. Softw. 2017, 38, 164–168. [Google Scholar]
- Wang, X.; Fu, J. The Method of the Temperature Compensation for GMRS. Process Autom. Instrum. 2011, 32, 69–71. [Google Scholar]
- Li, X. Research on the Chip Integration Technique of Interface Circuit for High-Performance Tunneling-Magnetoresistance Sensors; Harbin Institute of Technology: Harbin, China, 2018. [Google Scholar]
- Xie, F.; Weiss, R.; Weigel, R. Simple Mathematical Operation-Based Calibration Method for Giant Magnetoresistive Current Sensor Applying B-Spline Modeling. IEEE Sens. J. 2016, 16, 4733–4739. [Google Scholar] [CrossRef]
- Xie, F.; Weiss, R.; Weigel, R. Improved mathematical operations based calibration method for giant magnetoresistive current sensor applying B-Spline modeling. Sens. Actuators A Phys. 2017, 254, 109–115. [Google Scholar] [CrossRef]
- Liu, X.; Pong, P.W.T.; Liu, C. Dual Measurement of Current and Temperature Using a Single Tunneling Magnetoresistive Sensor. In Proceedings of the 2018 IEEE SENSORS, New Delhi, India, 28–31 October 2018. [Google Scholar]
- Včelák, J.; Ripka, P.; Platil, A.; Kubík, J.; Kašpar, P. Errors of AMR compass and methods of their compensation. Sens. Actuators A Phys. 2006, 129, 53–57. [Google Scholar] [CrossRef]
- Sen, T.; Anoop, C.S.; Sen, S. Design and performance evaluation of two novel linearisation circuits for giant magneto-resistance based sensors. IET Circuits Devices Syst. 2017, 11, 496–503. [Google Scholar] [CrossRef]
- Sánchez Moreno, J.; Ramírez Muñoz, D.; Cardoso, S.; Casans Berga, S.; Navarro Antón, A.E.; Peixeiro De Freitas, P.J. A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor. Sensors 2011, 11, 2447–2458. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Wang, Y.; Tao, Y. High-Density Large-Scale TMR Sensor Array for Magnetic Field Imaging. IEEE Trans. Instrum. Meas. 2019, 68, 2594–2601. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Bi, T. Tunnel Magnetoresistance-Based Noncontact Current Sensing and Measurement Method. IEEE Trans. Instrum. Meas. 2022, 71, 1–9. [Google Scholar] [CrossRef]
- Jin, Z.; Mohd Noor Sam, M.A.I.; Oogane, M.; Ando, Y. Serial MTJ-Based TMR Sensors in Bridge Configuration for Detection of Fractured Steel Bar in Magnetic Flux Leakage Testing. Sensors 2021, 21, 668. [Google Scholar] [CrossRef]
- Wang, S.; Huang, H.; Yang, Y.; Chen, Y.; Fu, Z.; Jin, Z.; Shi, Z.; Xiong, X.; Zou, X.; Chen, J. A Modulation Method for Tunnel Magnetoresistance Current Sensors Noise Suppression. Micromachines 2024, 15, 360. [Google Scholar] [CrossRef]
- Yin, X.; Zhou, K.; Li, P.; Sun, H.; Tian, B.; Wang, X.; Guo, M.; Wang, Z.; Liu, Z.; Zhao, J.; et al. Design and Development of Intelligent Current Sensor Based on Tunnel Magnetoresistance. In Proceedings of the 2020 12th IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Nanjing, China, 20–23 September 2020. [Google Scholar]
- Shao, S.; Yu, N.; Xu, X.; Bai, J.; Wu, X.; Zhang, J. Tunnel Magnetoresistance-Based Short-Circuit and Over-Current Protection for IGBT Module. IEEE Trans. Power Electron. 2020, 35, 10930–10944. [Google Scholar] [CrossRef]
- Lu, C.; Song, L.; Ren, H.; Wang, X.; Yuan, G. Principle and application of Tunnel magnetoresistance current sensor against direct-current influence. In Proceedings of the 2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Wuhan, China, 22–24 April 2022. [Google Scholar]
- Xu, X.P.; Wang, S.; Liu, T.Z.; Zhu, M.; Wang, J.G. TMR Busbar Current Sensor With Good Frequency Characteristics. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Yan, S.; Zhou, Z.; Yang, Y.; Leng, Q.; Zhao, W. Developments and applications of tunneling magnetoresistance sensors. Tsinghua Sci. Technol. 2022, 27, 443–454. [Google Scholar] [CrossRef]
- Chen, P.; Feng, J.; Zhang, Y.; Wang, Y.; Huang, H.; Wang, S.; Tian, W.; Deng, H.; Wan, C.; Wei, H.; et al. Fast response of TMR magnetic sensor in high-frequency alternating magnetic fields under varying temperature conditions. J. Magn. Magn. Mater. 2024, 604, 172284. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Y.; Shao, J.; Chen, Y.; Fu, Z.; Xia, Q.; Wang, S.; Li, X.; Dong, G.; Zhou, M.; et al. Temperature dependence of tunnel magnetoresistance in serial magnetic tunnel junctions. AIP Adv. 2022, 12, 055114. [Google Scholar] [CrossRef]
- Yuan, L.; Liou, S.H.; Wang, D. Temperature dependence of magnetoresistance in magnetic tunnel junctions with different free layer structures. Phys. Rev. B 2006, 73, 134403. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Wu, T.; Li, X.; Zhang, J.; Yu, J.; Zeng, G.; Tang, H.; Zhang, D. Research on temperature drift of tunneling magnetoresistance sensor based on proportional relationship and MacLaurin’s series. IEICE Electron. Express 2023, 20, 20220486. [Google Scholar] [CrossRef]
Fitting Order | RMSE |
---|---|
First-order | 6.055 × 10−3 |
Second-order | 2.265 × 10−3 |
Third-order | 2.261 × 10−3 |
[28] | [32] | [35] | [36] | This Work | |
---|---|---|---|---|---|
Compensation Types | Hardware | Hardware | Software | Software | Software |
Temperature Range | −10~60 °C | −40~80 °C | −45~85 °C | −20~80 °C | −40~120 °C |
Pre-Compensation TCS | 1780 ppm/°C | 2498 ppm/°C | 1100 ppm/°C | \ | 1010 ppm/°C |
Compensated TCS | 504 ppm/°C | 678 ppm/°C | 117 ppm/°C | \ | 37 ppm/°C |
Measurement Precision | \ | \ | \ | 0.60% | 0.28% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhou, K.; Jin, Q.; Lu, B.; Jin, Z.; Chen, J. A High-Precision Temperature Compensation Method for TMR Weak Current Sensors Based on FPGA. Micromachines 2024, 15, 1407. https://doi.org/10.3390/mi15121407
Wu J, Zhou K, Jin Q, Lu B, Jin Z, Chen J. A High-Precision Temperature Compensation Method for TMR Weak Current Sensors Based on FPGA. Micromachines. 2024; 15(12):1407. https://doi.org/10.3390/mi15121407
Chicago/Turabian StyleWu, Jie, Ke Zhou, Qingren Jin, Baihua Lu, Zhenhu Jin, and Jiamin Chen. 2024. "A High-Precision Temperature Compensation Method for TMR Weak Current Sensors Based on FPGA" Micromachines 15, no. 12: 1407. https://doi.org/10.3390/mi15121407
APA StyleWu, J., Zhou, K., Jin, Q., Lu, B., Jin, Z., & Chen, J. (2024). A High-Precision Temperature Compensation Method for TMR Weak Current Sensors Based on FPGA. Micromachines, 15(12), 1407. https://doi.org/10.3390/mi15121407