Design of a Shock-Protected Structure for MEMS Gyroscopes over a Full Temperature Range
Abstract
:1. Introduction
2. Modeling and Analysis
2.1. Single/Two Degree of Freedom Shock Models
2.2. U-Shaped Folded Beam Model
3. Structural Design
4. Simulation and Experiments
4.1. Simulation Analysis
4.2. Experimental Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hartzell, A.L.; Da Silva, M.G.; Shea, H.R. MEMS Reliability; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Sun, H.; Yin, M.; Wei, W.; Li, J.; Wang, H.; Jin, X. MEMS Based Energy Harvesting for the Internet of Things: A Survey. Microsyst. Technol. 2018, 24, 2853–2869. [Google Scholar] [CrossRef]
- Skogström, L.; Li, J.; Mattila, T.T.; Vuorinen, V. Chapter 44—MEMS Reliability. In Handbook of Silicon Based MEMS Materials and Technologies, 3rd ed.; Tilli, M., Paulasto-Krockel, M., Petzold, M., Theuss, H., Motooka, T., Lindroos, V., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 851–876. ISBN 978-0-12-817786-0. [Google Scholar]
- Li, Y.; Li, J.; Xu, L. Failure Mode Analysis of MEMS Suspended Inductors under Mechanical Shock. Microelectron. Reliab. 2018, 85, 38–48. [Google Scholar] [CrossRef]
- Lian, J.; Li, J.; Xu, L. The Effect of Displacement Constraints on the Failure of MEMS Tuning Fork Gyroscopes under Shock Impact. Micromachines 2019, 10, 343. [Google Scholar] [CrossRef]
- Peng, T.; You, Z. Reliability of MEMS in Shock Environments: 2000–2020. Micromachines 2021, 12, 1275. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Liu, S.; Bae, S.J.; Cao, Y. Reliability Modelling for Multi-Component Systems Subject to Stochastic Deterioration and Generalized Cumulative Shock Damages. Reliab. Eng. Syst. Saf. 2021, 205, 107260. [Google Scholar] [CrossRef]
- Zhuang, J.H.; Liu, Y.X.; He, C.H.; Zhang, R.Z.; Zhou, B.; Cheng, X.Y. Optimization Design Method of MEMS-IMU Structure. In Proceedings of the 2019 IEEE 14th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Bangkok, Thailand, 11–14 April 2019; pp. 466–470. [Google Scholar]
- Wang, J.; Lou, W.; Wang, D.; Feng, H. Design, Analysis, and Fabrication of Silicon-Based MEMS Gyroscope for High-g Shock platform. Microsyst. Technol. 2019, 25, 4577–4586. [Google Scholar] [CrossRef]
- Bai, B.; Li, C.; Zhao, Y. Development of V-Shaped Beam on the Shock Resistance and Driving Frequency of Micro Quartz Tuning Forks Resonant Gyroscope. Micromachines 2020, 11, 1012. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Huang, L.; Ding, X.; Li, H. Design and Implementation of a Dual-Mass MEMS Gyroscope with High Shock Resistance. Sensors 2018, 18, 1037. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Jiang, F.; Zhang, W.; Hao, Y. Micromachined Integrated Self-Adaptive Nonlinear Stops for Mechanical Shock Protection of MEMS. J. Micromech. Microeng. 2018, 28, 064006. [Google Scholar] [CrossRef]
- Fathalilou, M.; Soltani, K.; Rezazadeh, G.; Cigeroglu, E. Enhancement of the Reliability of MEMS Shock Sensors by Adopting a Dual-Mass Model. Measurement 2020, 153, 107428. [Google Scholar] [CrossRef]
- Peng, T.; You, Z. The Optimal Shape of MEMS Beam Under High-G Shock Based on a Probabilistic Fracture Model. In Proceedings of the 2022 IEEE International Reliability Physics Symposium (IRPS), Dallas, TX, USA, 27–31 March 2022; pp. P42-1–P42-5. [Google Scholar]
- Lee, H.; Jo, E.; Lee, J.-I.; Kim, J. MEMS Shock Absorbers Integrated with Al2O3-Reinforced, Mechanically Resilient Nanotube Arrays. In Proceedings of the 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS), Munich, Germany, 15–19 January 2023; pp. 45–48. [Google Scholar]
- Jo, E.; Lee, H.; Lee, J.-I.; Kim, J. Mechanically Resilient, Alumina-Reinforced Carbon Nanotube Arrays for in-Plane Shock Absorption in Micromechanical Devices. Microsyst. Nanoeng. 2023, 9, 76. [Google Scholar] [CrossRef]
- Shi, Y.; Wen, X.; Zhao, Y.; Zhao, R.; Cao, H.; Liu, J. Investigation and Experiment of High Shock Packaging Technology for High-G MEMS Accelerometer. IEEE Sens. J. 2020, 20, 9029–9037. [Google Scholar] [CrossRef]
- Peng, T.; You, Z. A Computationally Efficient Model of MEMS Stopper for Reliability Optimization. In Proceedings of the 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Dubai, United Arab Emirates, 28 November–1 December 2021; pp. 1–6. [Google Scholar]
- Bian, L.; Wang, G. Reliability Analysis for Competing Failure Processes with Mutual Dependence of the System under the Cumulative Shock. In Proceedings of the 2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling (APARM), Vancouver, BC, Canada, 20–23 August 2020; pp. 1–5. [Google Scholar]
- Gao, H.; Cui, L.; Qiu, Q. Reliability Modeling for Degradation-Shock Dependence Systems with Multiple Species of Shocks. Reliab. Eng. Syst. Saf. 2019, 185, 133–143. [Google Scholar] [CrossRef]
- Xu, K.; Zhu, N.; Jiang, F.; Zhang, W.; Hao, Y. A Transfer Function Approach to Shock Duration Compensation for Laboratory Evaluation of Ultra-High-G Vacuum-Packaged MEMS Accelerometers. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Republic of Korea, 27–31 January 2019; pp. 676–679. [Google Scholar]
- Kim, B.; Hopcroft, M.A.; Candler, R.N.; Jha, C.M.; Agarwal, M.; Melamud, R.; Chandorkar, S.A.; Yama, G.; Kenny, T.W. Temperature Dependence of Quality Factor in MEMS Resonators. J. Microelectromechanical Syst. 2008, 17, 755–766. [Google Scholar] [CrossRef]
- He, C.H.; Wang, Y.P.; Huang, Q.W.; Zhao, Q.C.; Yang, Z.C.; Zhang, D.C.; Yan, G.Z. Research on the Packaging Reliability and Degradation Models of Quality Factors for a High Vacuum Sealed MEMS Gyroscope. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 1077–1080. [Google Scholar]
- Cui, J.; Zhao, Q. Thermal Stabilization of Quality Factor for Dual-Axis MEMS Gyroscope Based On Joule Effect In-Situ Dynamic Tuning. IEEE Trans. Ind. Electron. 2023, 71, 1060–1068. [Google Scholar] [CrossRef]
- Younis, M.I. MEMS Linear and Nonlinear Statics and Dynamics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 20. [Google Scholar]
- Wong, W.C.; Azid, I.A.; Majlis, B.Y. Theoretical Analysis of Stiffness Constant and Effective Mass for a Round-Folded Beam in MEMS Accelerometer. Stroj. Vestn. 2011, 57, 517–525. [Google Scholar] [CrossRef]
- Zhong, Z.-Y.; Zhou, J.-P.; Zhang, H.-L.; Zhang, T. Effect of the Equivalent Stiffness of Flexible Supports on the MEMS Cantilever-Based Sensors. Comput. Struct. 2016, 169, 101–111. [Google Scholar] [CrossRef]
- Budynas, R.G.; Ali, M. Sadegh Roark’s Formulas for Stress and Strain; McGraw-Hill Education: New York, NY, USA, 2020. [Google Scholar]
- Qin, Z.; Gao, Y.; Ding, X.; Jia, J.; Huang, L.; Li, H. Design and Optimization of a Vibrating Ring Gyroscope With High Shock Resistance by Differential Evolution. IEEE Sens. J. 2021, 21, 16510–16518. [Google Scholar] [CrossRef]
- Liang, D.-D.; Yang, X.-D.; Zhang, W.; Ren, Y.; Yang, T. Linear, Nonlinear Dynamics, and Sensitivity Analysis of a Vibratory Ring Gyroscope. Theor. Appl. Mech. Lett. 2018, 8, 393–403. [Google Scholar] [CrossRef]
Parameter | Without the SPS | With the SPS |
---|---|---|
Bias instability (°/h) | 10 | 6 |
Bias instability at full temperature (°/h) | 30 | 17 |
Nonlinearity of the scale factor (ppm) | 100 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Lin, J.; He, C.; Wu, H.; Huang, Q.; Yan, G. Design of a Shock-Protected Structure for MEMS Gyroscopes over a Full Temperature Range. Micromachines 2024, 15, 206. https://doi.org/10.3390/mi15020206
Xu Y, Lin J, He C, Wu H, Huang Q, Yan G. Design of a Shock-Protected Structure for MEMS Gyroscopes over a Full Temperature Range. Micromachines. 2024; 15(2):206. https://doi.org/10.3390/mi15020206
Chicago/Turabian StyleXu, Yingyu, Jing Lin, Chunhua He, Heng Wu, Qinwen Huang, and Guizhen Yan. 2024. "Design of a Shock-Protected Structure for MEMS Gyroscopes over a Full Temperature Range" Micromachines 15, no. 2: 206. https://doi.org/10.3390/mi15020206
APA StyleXu, Y., Lin, J., He, C., Wu, H., Huang, Q., & Yan, G. (2024). Design of a Shock-Protected Structure for MEMS Gyroscopes over a Full Temperature Range. Micromachines, 15(2), 206. https://doi.org/10.3390/mi15020206