Driving Principle and Stability Analysis of Vertical Comb-Drive Actuator for Scanning Micromirrors
Abstract
:1. Introduction
2. The Principle and Design of Electrostatically Actuated Micromirrors
2.1. Analysis of Drive Structure and Quasi-Static Deflection Principle
2.2. Analysis of Micromirror Driving Stability
2.2.1. The Comb Fingers’ Lateral Bending Contact’s Instability Model
2.2.2. The Comb Fingers’ Lateral Displacement Contact’s Instability Model
2.2.3. The Comb Fingers’ Lateral Rotational Contact’s Instability Model
2.2.4. The Comb Fingers’ Longitudinal Displacement Contact’s Instability Model
3. Fabrication
4. Experiments and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, M.C.; Solgaard, O.; Ford, J.E. Optical MEMS for lightwave communication. J. Light. Technol. 2006, 24, 4433–4454. [Google Scholar] [CrossRef]
- Wang, D.; Watkins, C.; Xie, H. MEMS mirrors for LiDAR: A review. Micromachines 2020, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Petrak, O.; Schwarz, F.; Pohl, L.; Reher, M.; Janicke, C.; Przytarski, J.; Senger, F.; Albers, J.; Giese, T.; Ratzmann, L.; et al. Laser beam scanning based AR-display applying resonant 2D MEMS mirrors. In Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) II; SPIE: Bellingham, WA, USA, 2021; Volume 11765, pp. 15–32. [Google Scholar] [CrossRef]
- Hah, D.; Huang, S.Y.; Tsai, J.C.; Toshiyoshi, H.; Wu, M.C. Low-voltage, large-scan angle MEMS analog micromirror arrays with hidden vertical comb-drive actuators. J. Microelectromechanical Syst. 2004, 13, 279–289. [Google Scholar] [CrossRef]
- Maroufi, M.; Fowler, A.G.; Moheimani, S.R. MEMS for nanopositioning: Design and applications. J. Microelectromechanical Syst. 2017, 26, 469–500. [Google Scholar] [CrossRef]
- Chen, C.; Lee, C. Design and modeling for comb drive actuator with enlarged static displacement. Sens. Actuators A Phys. 2004, 115, 530–539. [Google Scholar] [CrossRef]
- Hung, A.C.L.; Lai, H.Y.H.; Lin, T.W.; Fu, S.G.; Lu, M.S.C. An electrostatically driven 2D micro-scanning mirror with capacitive sensing for projection display. Sens. Actuators A Phys. 2015, 222, 122–129. [Google Scholar] [CrossRef]
- Winter, C.; Fabre, L.; Conte, F.L.; Kilcher, L.; Kechana, F.; Abelé, N.; Kayal, M. Micro-beamer based on MEMS micro-mirrors and laser light source. Procedia Chem. 2009, 1, 1311–1314. [Google Scholar] [CrossRef]
- Wolffenbuttel, R. MEMS-based optical mini-and microspectrometers for the visible and infrared spectral range. J. Micromechanics Microeng. 2005, 15, S145–S152. [Google Scholar] [CrossRef]
- De Dobbelaere, P.; Falta, K.; Gloeckner, S.; Patra, S. Digital MEMS for optical switching. IEEE Commun. Mag. 2002, 40, 88–95. [Google Scholar] [CrossRef]
- Schenk, H.; Durr, P.; Haase, T.; Kunze, D.; Sobe, U.; Lakner, H.; Kuck, H. Large deflection micromechanical scanning mirrors for linear scans and pattern generation. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 715–722. [Google Scholar] [CrossRef]
- Carlen, E.T.; Heng, K.H.; Bakshi, S.; Pareek, A.; Mastrangelo, C.H. High-aspect ratio vertical comb-drive actuator with small self-aligned finger gaps. J. Microelectromechanical Syst. 2005, 14, 1144–1155. [Google Scholar] [CrossRef]
- Tsou, C.; Lin, W.T.; Fan, C.C.; Chou, B.C. A novel self-aligned vertical electrostatic combdrives actuator for scanning micromirrors. J. Micromechanics Microeng. 2005, 15, 855–860. [Google Scholar] [CrossRef]
- Ono, T.; Sim, D.Y.; Esashi, M. Micro-discharge and electric breakdown in a micro-gap. J. Micromechanics Microeng. 2000, 10, 445. [Google Scholar] [CrossRef]
- Zhang, W.M.; Yan, H.; Peng, Z.K.; Meng, G. Electrostatic pull-in instability in MEMS/NEMS: A review. Sens. Actuators A Phys. 2014, 214, 187–218. [Google Scholar] [CrossRef]
- Degani, O.; Socher, E.; Lipson, A.; Lejtner, T.; Setter, D.J.; Kaldor, S.; Nemirovsky, Y. Pull-in study of an electrostatic torsion microactuator. J. Microelectromechanical Syst. 1998, 7, 373–379. [Google Scholar] [CrossRef]
- Chen, Y.C.; Chang, I.C.M.; Chen, R.; Hou, M.T.K. On the side instability of comb-fingers in MEMS electrostatic devices. Sens. Actuators A Phys. 2008, 148, 201–210. [Google Scholar] [CrossRef]
- Hah, D.; Toshiyoshi, H.; Wu, M.C. Design of electrostatic actuators for MOEMS applications. SPIE 2002, 4755, 200–207. [Google Scholar] [CrossRef]
- Nathanson, H.C.; Newell, W.E.; Wickstrom, R.A.; Davis, J.R. The resonant gate transistor. IEEE Trans. Electron Devices 1967, 14, 117–133. [Google Scholar] [CrossRef]
- Hirano, T.; Furuhata, T.; Gabriel, K.J.; Fujita, H. Design, fabrication, and operation of submicron gap comb-drive microactuators. J. Microelectromechanical Syst. 1992, 1, 52–59. [Google Scholar] [CrossRef]
- Bochobza-Degani, O.; Elata, D.; Nemirovsky, Y. A general relation between the ranges of stability of electrostatic actuators under charge or voltage control. Appl. Phys. Lett. 2003, 82, 302–304. [Google Scholar] [CrossRef]
- Pamidighantam, S.; Puers, R.; Baert, K.; Tilmans, H.A. Pull-in voltage analysis of electrostatically actuated beam structures with fixed–fixed and fixed–free end conditions. J. Micromechanics Microeng. 2002, 12, 458. [Google Scholar] [CrossRef]
- Zhou, G.; Dowd, P. Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators. J. Micromechanics Microeng. 2002, 13, 178. [Google Scholar] [CrossRef]
- Huang, W.; Lu, G. Analysis of lateral instability of in-plane comb drive MEMS actuators based on a two-dimensional model. Sens. Actuators A Phys. 2004, 113, 78–85. [Google Scholar] [CrossRef]
- Lee, D.; Solgaard, O. Pull-in analysis of torsional scanners actuated by electrostatic vertical combdrives. J. Microelectromechanical Syst. 2008, 17, 1228–1238. [Google Scholar] [CrossRef]
- Tang, W.C.K. Electrostatic Comb Drive for Resonant Sensor and Actuator Applications; University of California: Berkeley, CA, USA, 1990. [Google Scholar]
- Liu, H.W. Mechanics of Materials I/5th Edition; Higher Education Press: Beijing, China, 2011. [Google Scholar]
- Tang, W.C.; Lim, M.G.; Howe, R.T. Electrostatic comb drive levitation and control method. J. Microelectromechanical Syst. 1992, 1, 170–178. [Google Scholar] [CrossRef]
- Hah, D.; Patterson, P.R.; Nguyen, H.D.; Toshiyoshi, H.; Wu, M.C. Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 505–513. [Google Scholar] [CrossRef]
- Yeh, J.L.; Hui, C.Y.; Tien, N.C. Electrostatic model for an asymmetric combdrive. J. Microelectromechanical Syst. 2002, 9, 126–135. [Google Scholar] [CrossRef]
- Li, Y.; Psychogiou, D.; Kühne, S.; Hesselbarth, J.; Hafner, C.; Hierold, C. Large stroke staggered vertical comb-drive actuator for the application of a millimeter-wave tunable phase shifter. J. Microelectromechanical Syst. 2013, 22, 962–975. [Google Scholar] [CrossRef]
- Legtenberg, R.; Groeneveld, A.W.; Elwenspoek, M. Comb-drive actuators for large displacements. J. Micromechanics Microeng. 1996, 6, 320. [Google Scholar] [CrossRef]
- Bahgat, A.S.; Zaki, A.H.; Abdo Mohamed, M.; El Sherif, A.F. Design and simulation of MEMS-actuated adjustable optical wedge for laser beam scanners. J. Micro/Nanolithography MEMS MOEMS 2018, 17, 015501. [Google Scholar] [CrossRef]
- Chyuan, S.W. Computational simulation for MEMS combdrive levitation using FEM. J. Electrost. 2008, 66, 361–365. [Google Scholar] [CrossRef]
1.0 | 1.2 | 1.5 | 2.0 | 2.5 | 3.0 | 4.0 | 6.0 | 8.0 | 10.0 | ∞ | |
0.141 | 0.166 | 0.196 | 0.229 | 0.249 | 0.263 | 0.281 | 0.299 | 0.307 | 0.313 | 0.333 |
Symbol | Parameters | Value |
---|---|---|
Length of torsion beam | 1200 μm | |
Width of torsion beam | 20 μm | |
Thickness of torsion beam | 30 μm | |
Distance from the torsion beams to the end of the movable comb fingers | 194 μm | |
Gap between fixed and movable fingers | 5 μm | |
Width of comb fingers | 5 μm | |
Length of comb fingers | 280 μm | |
Thickness of movable comb fingers | 10 μm | |
Thickness of fixed comb fingers | 20 μm | |
Length of the overlap of the comb finger | 240 μm | |
Thickness of dielectric layer | 1 μm | |
Number of movable comb fingers | 120 | |
Young’s modulus of silicon | 130 GPa | |
µ | Poisson’s ratio of silicon | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, Y.; Qian, L.; Wang, J.; Wang, K.; Zhou, P.; Li, W.; Shen, W. Driving Principle and Stability Analysis of Vertical Comb-Drive Actuator for Scanning Micromirrors. Micromachines 2024, 15, 226. https://doi.org/10.3390/mi15020226
Shan Y, Qian L, Wang J, Wang K, Zhou P, Li W, Shen W. Driving Principle and Stability Analysis of Vertical Comb-Drive Actuator for Scanning Micromirrors. Micromachines. 2024; 15(2):226. https://doi.org/10.3390/mi15020226
Chicago/Turabian StyleShan, Yameng, Lei Qian, Junduo Wang, Kewei Wang, Peng Zhou, Wenchao Li, and Wenjiang Shen. 2024. "Driving Principle and Stability Analysis of Vertical Comb-Drive Actuator for Scanning Micromirrors" Micromachines 15, no. 2: 226. https://doi.org/10.3390/mi15020226
APA StyleShan, Y., Qian, L., Wang, J., Wang, K., Zhou, P., Li, W., & Shen, W. (2024). Driving Principle and Stability Analysis of Vertical Comb-Drive Actuator for Scanning Micromirrors. Micromachines, 15(2), 226. https://doi.org/10.3390/mi15020226