Femtosecond Laser-Induced Phase Transformation on Single-Crystal 6H-SiC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Preparation
2.2. Experimental Method and Setup
3. Results
3.1. Calculation of Single-Pulse Ablation Threshold
3.2. Structural Transformation under Different Energies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Manoharan, V.; Tamilperuvalathan, S. Experimental investigation and prediction of ECDM parameters on fiber reinforced SiC composite using hybrid ERNN-based Sparrow Search Optimization. Mater. Today Commun. 2023, 36, 106777. [Google Scholar] [CrossRef]
- Mackowiak, P.; Erbacher, K.; Baeuscher, M.; Schiffer, M.; Lang, K.D.; Schneider-Ramelow, M.; Ngo, H.D. Piezoresistive 4H-Silicon Carbide (SiC) pressure sensor. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October–3 November 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, Y.; Yang, Y.; Pang, X.; Hao, L.; Zhao, Y.; Liu, J. Development of Laser-Micromachined 4H-SiC MEMS Piezoresistive Pressure Sensors for Corrosive Environments. IEEE Trans. Electron Devices 2022, 69, 2009–2014. [Google Scholar] [CrossRef]
- DesAutels, G.L.; Powers, P.; Brewer, C.; Walker, M.; Burky, M.; Anderson, G. Optical temperature sensor and thermal expansion measurement using a femtosecond micromachined grating in 6H-SiC. Appl. Opt. 2008, 47, 3773–3777. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, Y.; Wang, L.; Zhao, Y. Application of femtosecond laser etching in the fabrication of bulk SiC accelerometer. J. Mater. Res. Technol. 2022, 17, 2577–2586. [Google Scholar] [CrossRef]
- Zhai, Y.; Li, H.; Tao, Z.; Yang, C.; Cao, X.; Che, Z.; Xu, T. Simulation Analysis and Fabrication of a Silicon Carbide-Based Piezoresistive Accelerometer. J. Phys. Conf. Ser. 2022, 2246, 012007. [Google Scholar] [CrossRef]
- Lv, Y.; Yi, A.; Wang, Y.; Zhou, H.; Ou, X.; Li, T. MEMS Thermocouple Sensor Based on 4H-Silicon-Carbide-On-Insulator (4H-SiCOI). IEEE Sens. J. 2022, 22, 13930–13936. [Google Scholar] [CrossRef]
- Romijn, J.; Vollebregt, S.; Middelburg, L.M.; El Mansouri, B.; van Zeijl, H.W.; May, A.; Erlbacher, T.; Leijtens, J.; Zhang, G.; Sarro, P.M. Integrated 64 pixel UV image sensor and readout in a silicon carbide CMOS technology. Microsyst. Nanoeng. 2022, 8, 114. [Google Scholar] [CrossRef]
- Zetterling, C. Integrated circuits in silicon carbide for high-temperature applications. MRS Bull. 2015, 40, 431–438. [Google Scholar] [CrossRef]
- Feng, Z.; Xiao, L.; Luan, C.; Li, Y.; Sha, H.; Li, H.; Xu, X. Dependence of conduction characteristics on compensation type and lattice structure of SiC photoconductive semiconductor switches. Appl. Opt. 2021, 60, 3182–3186. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Yadav, S.; Truong, T.A.; Han, M.; Barton, M.; Leitch, M.; Guzman, P.; Dinh, T.; Ashok, A.; Vu, H.; et al. Integrated, Transparent Silicon Carbide Electronics and Sensors for Radio Frequency Biomedical Therapy. ACS Nano 2022, 16, 10890–10903. [Google Scholar] [CrossRef]
- Sun, B.; Mo, J.; Zhang, H.; van Zeijl, H.W.; van Driel, W.D.; Zhang, G. Silicon Carbide-on-Insulator Thermal-Piezoresistive Resonator for Harsh Environment Application. In Proceedings of the 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS), Munich, Germany, 15–19 January 2023; pp. 621–624. [Google Scholar] [CrossRef]
- Guzman, P.; Dinh, T.; Qamar, A.; Lee, J.; Zheng, X.Q.; Feng, P.; Rais-Zadeh, M.; Phan, H.-P.; Nguyen, T.; Foisal, A.R.M.; et al. Thermal-piezoresistive pumping on double SiC layer resonator for effective quality factor tuning. Sens. Actuators A 2022, 343, 113678. [Google Scholar] [CrossRef]
- Akiyama, T.; Briand, D.; de Rooij, N.F. Piezoresistive n-type 4H-SiC pressure sensor with membrane formed by mechanical milling. In Proceedings of the 2011 IEEE Sensors, Limerick, Ireland, 28–31 October 2011; pp. 222–225. [Google Scholar] [CrossRef]
- Dhar, S.; Seitz, O.; Halls, M.D.; Choi, S.; Chabal, Y.J.; Feldman, L.C. Chemical Properties of Oxidized Silicon Carbide Surfaces upon Etching in Hydrofluoric Acid. J. Am. Chem. Soc. 2009, 131, 16808–16813. [Google Scholar] [CrossRef]
- Shi, D.; Chen, Y.; Li, Z.; Dong, S.; Li, L.; Hou, M.; Liu, H.; Zhao, S.; Chen, X.; Wong, C.; et al. Anisotropic Charge Transport Enabling High-Throughput and High-Aspect-Ratio Wet Etching of Silicon Carbide. Small Methods 2022, 6, 2200329. [Google Scholar] [CrossRef]
- Lee, J.; Efremov, A.; Kim, K.; Kwon, K.H. On the Etching Mechanisms of SiC Thin Films in CF4/CH2F2/N2/Ar Inductively Coupled Plasma. Plasma Chem. Plasma Process. 2017, 37, 489–509. [Google Scholar] [CrossRef]
- Liu, R.; Wu, H.; Zhang, H.; Li, C.; Tian, L.; Li, L.; Li, J.; Wu, J.; Pan, Y. A dry etching method for 4H-SiC via using photoresist mask. J. Cryst. Growth 2020, 531, 125351. [Google Scholar] [CrossRef]
- Liu, X.Q.; Yu, L.; Yang, S.N.; Chen, Q.D.; Wang, L.; Juodkazis, S.; Sun, H.B. Optical Nanofabrication of Concave Microlens Arrays. Laser Photonics Rev. 2019, 13, 1800272. [Google Scholar] [CrossRef]
- Wu, C.; Fang, X.; Liu, F.; Guo, X.; Maeda, R.; Jiang, Z. High speed and low roughness micromachining of silicon carbide by plasma etching aided femtosecond laser processing. Ceram. Int. 2020, 46, 17896–17902. [Google Scholar] [CrossRef]
- Michaels, J.A.; Janavicius, L.; Wu, X.; Chan, C.; Huang, H.-C.; Namiki, S.; Kim, M.; Sievers, D.; Li, X. Producing Silicon Carbide Micro and Nanostructures by Plasma-Free Metal-Assisted Chemical Etching. Adv. Funct. Mater. 2021, 31, 2103298. [Google Scholar] [CrossRef]
- Osipov, A.A.; Iankevich, G.A.; Osipov, A.A.; Speshilova, A.B.; Karakchieva, A.A.; Endiiarova, E.V.; Levina, S.N.; Karakchiev, S.V.; Alexandrov, S. Silicon carbide dry etching technique for pressure sensors design. J. Manuf. Process. 2022, 73, 316–325. [Google Scholar] [CrossRef]
- Song, J.; Dai, Y.; Tao, W.; Gong, M.; Ma, G.; Zhao, Q.; Qiu, J. Surface birefringence of self-assembly periodic nanostructures induced on 6H-SiC surface by femtosecond laser. Appl. Surf. Sci. 2016, 363, 664–669. [Google Scholar] [CrossRef]
- Luan, Q.; Jia, Y.; Wang, Y.; Akhmadaliev, S.; Zhou, S.; de Aldana, J.R.V.; Tan, Y.; Chen, F. Optical ridge waveguides in 4H-SiC single crystal produced by combination of carbon ion irradiation and femtosecond laser ablation. Opt. Mater. Express 2014, 4, 1166–1171. [Google Scholar] [CrossRef]
- Zhang, B.; He, S.; Yang, Q.; Liu, H.; Wang, L.; Chen, F. Femtosecond laser modification of 6H–SiC crystals for waveguide devices. Appl. Phys. Lett. 2020, 116, 111903. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, R.; Huang, C.; Wang, J.; Jia, Z.; Wang, J. An investigation of recast behavior in laser ablation of 4H-silicon carbide wafer. Mater. Sci. Semicond. Process. 2020, 105, 104701. [Google Scholar] [CrossRef]
- Khuat, V.; Ma, Y.; Si, J.; Chen, T.; Chen, F.; Hou, X. Fabrication of through holes in silicon carbide using femtosecond laser irradiation and acid etching. Appl. Surf. Sci. 2014, 289, 529–532. [Google Scholar] [CrossRef]
- Xie, X.; Lei, L.; Zhao, X.; Ma, L.; Tang, G.; Qiu, J.; Zhang, F.; Nie, Z. Femtosecond laser nanostructuring on a 4H-SiC surface by tailoring the induced self-assembled nanogratings. Opt. Express 2022, 30, 3379–3387. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, F.; Guo, Z.; Wang, X. Accelerated ICP etching of 6H-SiC by femtosecond laser modification. Appl. Surf. Sci. 2019, 488, 853–864. [Google Scholar] [CrossRef]
- Kim, E.; Shimotsuma, Y.; Sakakura, M.; Miura, K. 4H-SiC wafer slicing by using femtosecond laser double-pulses. Opt. Mater. Express 2017, 7, 2450–2460. [Google Scholar] [CrossRef]
- Qiu, L.; Su, Y.; Xu, K.M.; Cui, H.; Zheng, D.; Zhu, Y.; Li, L.; Li, F.; Zhao, W. A high-precision multi-dimensional microspectroscopic technique for morphological and properties analysis of cancer cell. Light Sci. Appl. 2023, 12, 129. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Liu, Y.; Luo, J. Recent application of Raman spectroscopy in tumor diagnosis: From conventional methods to artificial intelligence fusion. PhotoniX 2023, 4, 22. [Google Scholar] [CrossRef]
- Liu, J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Song, Q.; Hou, Y.; Yue, S.; Li, Y.; Zhang, Z.; Li, M.; Zhang, K.; Zhang, Z. Investigation of structural transformation and residual stress under single femtosecond laser pulse irradiation of 4H–SiC. Ceram. Int. 2022, 48, 24276–24282. [Google Scholar] [CrossRef]
- Wang, L.; Xu, B.; Cao, X.W.; Li, Q.K.; Tian, W.J.; Chen, Q.; Juodkazis, S.; Sun, H.B. Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses. Optica 2017, 4, 637–642. [Google Scholar] [CrossRef]
- Wang, L.; Cao, X.W.; Abid, M.I.; Li, Q.K.; Tian, W.J.; Chen, Q.D.; Juodkazis, S.; Sun, H.B. Nano-ablation of silica by plasmonic surface wave at low fluence. Opt. Lett. 2017, 42, 4446–4449. [Google Scholar] [CrossRef]
- Daviau, K.; Lee, K.K. High-Pressure, High-Temperature Behavior of Silicon Carbide: A Review. Crystals 2018, 8, 217. [Google Scholar] [CrossRef]
- Shigematsu, I.; Kanayama, K.; Tsuge, A.; Nakamura, M. Analysis of Constituents Generated with Laser Machining of Si3N4 and SiC. J. Mater. Sci. Lett. 1998, 17, 737–739. [Google Scholar] [CrossRef]
- Schaffer, C.B.; Brodeur, A.; Mazur, E. Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses. Meas. Sci. Technol. 2001, 12, 1784. [Google Scholar] [CrossRef]
- Li, Z.Z.; Fan, H.; Wang, L.; Zhao, X.J.; Zhang, X.; Yu, Y.H.; Xu, Y.S.; Wang, Y.; Wang, X.J.; Chen, Q.; et al. Super stealth dicing of transparent solids with nanometric precision. arXiv 2023, arXiv:2308.02352. [Google Scholar]
- Adelmann, B.; Hellmann, R. A study of SiC decomposition under laser irradiation. Appl. Phys. A 2017, 123, 454. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quan, H.; Wang, R.; Ma, W.; Wu, Z.; Qiu, L.; Xu, K.; Zhao, W. Femtosecond Laser-Induced Phase Transformation on Single-Crystal 6H-SiC. Micromachines 2024, 15, 242. https://doi.org/10.3390/mi15020242
Quan H, Wang R, Ma W, Wu Z, Qiu L, Xu K, Zhao W. Femtosecond Laser-Induced Phase Transformation on Single-Crystal 6H-SiC. Micromachines. 2024; 15(2):242. https://doi.org/10.3390/mi15020242
Chicago/Turabian StyleQuan, Hongsheng, Ruishi Wang, Weifeng Ma, Zhonghuai Wu, Lirong Qiu, Kemi Xu, and Weiqian Zhao. 2024. "Femtosecond Laser-Induced Phase Transformation on Single-Crystal 6H-SiC" Micromachines 15, no. 2: 242. https://doi.org/10.3390/mi15020242
APA StyleQuan, H., Wang, R., Ma, W., Wu, Z., Qiu, L., Xu, K., & Zhao, W. (2024). Femtosecond Laser-Induced Phase Transformation on Single-Crystal 6H-SiC. Micromachines, 15(2), 242. https://doi.org/10.3390/mi15020242