Advances in Carbon Dot-Based Ratiometric Fluorescent Probes for Environmental Contaminant Detection: A Review
Abstract
:1. Introduction
2. Construction Strategies of CDs in Detecting Environmental Contaminants
2.1. Surface Modification Strategy
2.2. Composite Strategy
2.3. Simple Mixing Strategy
2.4. Dual Emission Strategy
3. Application in Environmental Monitoring
3.1. Heavy Metal Ion Sensing
3.2. Detection of Organic Pollutants
3.3. Other Contaminants
4. Conclusions and Outlook
- Sustainable synthesis of biocompatible CDs for eco-friendly sensing: Most CDs are made using non-renewable materials and energy-intensive methods, which harm the environment. Additionally, biocompatible CDs are a new area with limited practical uses. Creating biocompatible CDs supports the global shift towards green chemistry and sustainability. These CDs can reduce environmental risks, making sensing applications safer. Their use also cuts down on hazardous waste and promotes renewable resources.
- Multiplexed sensing for comprehensive environmental analysis: Currently, many CD-based ratiometric probes are designed for single analytes, which makes combining multiple sensing capabilities into one probe challenging due to possible cross-reactivity. Since the environment usually has a mix of contaminants, creating multiplexed ratiometric probes is crucial. These probes can detect various contaminants simultaneously, reducing the need for many sensors. This approach provides a more accurate assessment of environmental conditions by handling the complex nature of contaminants.
- Portable field sensors for real-time monitoring: While CD-based ratiometric sensors are mainly used in labs, their usefulness in field applications is limited. Even portable sensors may lack durability and quick detection capabilities. Portable sensors are important for real-time monitoring in tough environmental conditions, enabling rapid responses to emergencies. Field monitoring ensures timely environmental assessments and responses, especially in remote or disaster-prone areas. Developing portable, strong sensors is vital for improving data collection.
- Microscale environmental mapping for detailed insight: Microscale environmental mapping using CD-based ratiometric fluorescence has limitations in spatial precision and integrating diverse sensing technologies. Many environmental issues require a microscale perspective for deep understanding. Integrated spatial data improve decision-making. Enhanced spatial precision offers detailed insight into contamination patterns. Collaboration across disciplines helps interpret data effectively and derive actionable insights.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Song, X.; Wang, Y.; Hu, Z.; Yan, F.; Feng, G. Developed a ratiometric fluorescence pH nanosensor based on label-free carbon dots for intracellular lysosome imaging and water pH monitoring with a smartphone. Dye. Pigment. 2021, 193, 109490. [Google Scholar] [CrossRef]
- Hsu, W.H.; Jiang, S.J.; Sahayam, A.C. Determination of Cu, As, Hg and Pb in vegetable oils by electrothermal vaporization inductively coupled plasma mass spectrometry with palladium nanoparticles as modifier. Talanta 2013, 117, 268–272. [Google Scholar] [CrossRef]
- Liu, M.; Hashi, Y.; Pan, F.; Yao, J.; Song, G.; Lin, J. Automated on-line liquid chromatography-photodiode array-mass spectrometry method with dilution line for the determination of bisphenol A and 4-octylphenol in serum. J. Chromatogr. A 2006, 1133, 142–148. [Google Scholar] [CrossRef]
- Zhou, J.; Tian, Y.; Wu, X.; Hou, X. Visible light photochemical vapor generation using metal-free g-C3N4/CQDs composites as catalyst: Selective and ultrasensitive detection of mercury by ICP-MS. Microchem. J. 2017, 132, 319–326. [Google Scholar] [CrossRef]
- Huang, Y.; Peng, J.; Huang, X. Allylthiourea functionalized magnetic adsorbent for the extraction of cadmium, copper and lead ions prior to their determination by atomic absorption spectrometry. Microchim. Acta 2019, 186, 51. [Google Scholar] [CrossRef] [PubMed]
- Saber Tehrani, M.; Rastegar, F.; Parchehbaf, A.; Rezvani, Z. Determination of copper by flame atomic absorption spectrometry after preconcentration with activated carbon impregnated with a new Schiff base. Chin. J. Chem. 2005, 23, 1437–1442. [Google Scholar] [CrossRef]
- Li, Y.K.; Yang, T.; Chen, M.L.; Wang, J.H. Supported carbon dots serve as high-performance adsorbent for the retention of trace cadmium. Talanta 2018, 180, 18–24. [Google Scholar] [CrossRef]
- Mashkani, M.; Mehdinia, A.; Jabbari, A.; Bide, Y.; Nabid, M.R. Preconcentration and extraction of lead ions in vegetable and water samples by N-doped carbon quantum dot conjugated with Fe3O4 as a green and facial adsorbent. Food Chem. 2018, 239, 1019–1026. [Google Scholar] [CrossRef]
- Wu, Q.; Li, Y.; Wang, C.; Liu, Z.; Zang, X.; Zhou, X.; Wang, Z. Dispersive liquid-liquid microextraction combined with high performance liquid chromatography-fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples. Anal. Chim. Acta 2009, 638, 139–145. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhou, M.; Gu, J.; Li, X. Spectrophotometric and high performance liquid chromatographic methods for sensitive determination of bisphenol A. Spectrochim. Acta Part A 2014, 122, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Song, Y.; Wei, R.; Yi, G. Determination of trace bisphenol A in water using three-phase hollow fiber liquid-phase microextraction coupled with high performance liquid chromatography. Chin. J. Anal. Chem. 2012, 40, 1409–1414. [Google Scholar] [CrossRef]
- Hua, M.Z.; Feng, S.; Wang, S.; Lu, X. Rapid detection and quantification of 2,4-dichlorophenoxyacetic acid in milk using molecularly imprinted polymers-surface-enhanced Raman spectroscopy. Food Chem. 2018, 258, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Du, B.; Wang, Q.; Zhang, J.; Zhu, X.; Lin, Z.; Dong, Y.; Fu, F.; Yu, T. Tuning the aggregation of silver nanoparticles with carbon dots for the surface-enhanced Raman scattering application. Carbon 2021, 185, 442–448. [Google Scholar] [CrossRef]
- Ge, Y.Q.; Liu, A.K.; Ji, R.X.; Shen, S.L.; Cao, X.Q. Detection of Hg2+ by a FRET ratiometric fluorescent probe based on a novel pyrido[1,2-a]benzimidazole-rhodamine system. Sens. Actuators B Chem. 2017, 251, 410–415. [Google Scholar] [CrossRef]
- An, W.W.; Mason, R.P.; Lippert, A.R. Energy transfer chemiluminescence for ratiometric pH imaging. Org. Biomol. Chem. 2018, 16, 4176–4182. [Google Scholar] [CrossRef]
- Fan, X.P.; Wang, H.Z.; Yang, W.; Ren, T.B.; Yuan, L. Ratiometric photoacoustic imaging of endogenous HNO in vivo for assessing prodrug release and liver injury. Chem. Commun. 2023, 59, 8969–8972. [Google Scholar] [CrossRef]
- Van de Bittner, G.C.; Bertozzi, C.R.; Chang, C.J. Strategy for dual-analyte luciferin imaging: In vivo bioluminescence detection of hydrogen peroxide and caspase activity in a murine model of acute inflammation. J. Am. Chem. Soc. 2013, 135, 1783–1795. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Li, Q.; Jiang, Y.; Zhou, H.; Liu, Y.H.; Miao, Q.Q.; Gao, M.Y. Near-Infrared afterglow luminescence of chlorin nanoparticles for ultrasensitive in vivo imaging. J. Am. Chem. Soc. 2022, 144, 6719–6726. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mao, L.; Liu, W.; Ding, F.; Zou, P.; Wang, X.; Zhao, Q.; Rao, H. A ratiometric fluorometric and colorimetric probe for the β-thalassemia drug deferiprone based on the use of gold nanoclusters and carbon dots. Microchim. Acta 2018, 185, 442. [Google Scholar] [CrossRef] [PubMed]
- Farahmand Nejad, M.A.; Hormozi-Nezhad, M.R. Design of a ratiometric fluorescent probe for naked eye detection of dopamine. Anal. Methods 2017, 9, 3505–3512. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Liu, Y.; Shi, L.; Yang, D. A cascade-triggered ratiometric fluorescent sensor based on nanocomposite for lactate determination. Sens. Actuators B Chem. 2022, 355, 131295. [Google Scholar] [CrossRef]
- Macairan, J.R.; Jaunky, D.B.; Piekny, A.; Naccache, R. Intracellular ratiometric temperature sensing using fluorescent carbon dots. Nanoscale Adv. 2019, 1, 105–113. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Song, H.; Yu, M.; Wei, L.; Li, Z. Synthesis of dual-emission fluorescent carbon quantum dots and their ratiometric fluorescence detection for arginine in 100% water solution. New J. Chem. 2019, 43, 13234–13239. [Google Scholar] [CrossRef]
- Xu, X.; Ren, D.; Chai, Y.; Cheng, X.; Mei, J.; Bao, J.; Wei, F.; Xu, G.; Hu, Q.; Cen, Y. Dual-emission carbon dots-based fluorescent probe for ratiometric sensing of Fe(III) and pyrophosphate in biological samples. Sens. Actuators B Chem. 2019, 298, 126829. [Google Scholar] [CrossRef]
- Dimos, K. Carbon quantum dots: Surface passivation and functionalization. Curr. Org. Chem. 2016, 20, 682–695. [Google Scholar] [CrossRef]
- Ostertag, B.J.; Cryan, M.T.; Serrano, J.M.; Liu, G.; Ross, A.E. Porous carbon nanofiber-modified carbon fiber microelectrodes for dopamine detection. ACS Appl. Nano Mater. 2022, 5, 2241–2249. [Google Scholar] [CrossRef]
- Sharma, V.; Tiwari, P.; Mobin, S.M. Sustainable carbon-dots: Recent advances in green carbon dots for sensing and bioimaging. J. Mater. Chem. B 2017, 5, 8904–8924. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.U.; Zhou, P.; Qin, L.Y.; Alam, A.; Ge, Z.J.; Wang, Y.H. Solvent-free synthesis of nitrogen doped carbon dots with dual emission and their biological and sensing applications. Mater. Today Nano 2022, 18, 100205. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, Z.B.; Lu, X.; Guo, J.Z.; Cheng, R.; Zhu, L.L.; Wang, C.F.; Chen, S. Facile synthesis of red dual-emissive carbon dots for ratiometric fluorescence sensing and cellular imaging. Nanoscale 2020, 12, 5494–5500. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.J.; Liang, X.Y.; Zhang, Z.X.; Wang, J.; Fei, Y.Y.; Ma, J.; Qu, S.N.; Mi, L. Carbon dots for intracellular pH sensing with fluorescence lifetime imaging microscopy. Nanomaterials 2020, 10, 604. [Google Scholar] [CrossRef]
- Meng, Y.; Cui, S.; Lei, P.; Guo, J.; Wang, Q.; Shuang, S.; Dong, C. Design of polarity-dependence orange emission multifunctional carbon dots for water detection and anti-counterfeiting. Mater. Today Chem. 2023, 33, 101669. [Google Scholar] [CrossRef]
- Zhao, Q.L.; Wang, X.T.; Song, Q.H.; Zang, Z.H.; Fan, C.Y.; Li, L.L.; Yu, X.F.; Lu, Z.M.; Zhang, X.H. Electrochemical synthesis of fluorescence-enhanced carbon dots with multicolor emission via surface nitrogen and sulfur modulation for information encryption applications. J. Mater. Chem. C 2023, 11, 14439–14447. [Google Scholar] [CrossRef]
- Bu, D.; Song, H.; Li, Z.; Wei, L.; Zhang, H.; Yu, M. Carbon-dot-based ratiometric fluorescent probe of intracellular zinc ion and persulfate ion with low dark toxicity. Luminescence 2020, 35, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chu, H.; Shen, J.; Wang, C.; Wei, Y. Green preparation of carbon dots from plum as a ratiometric fluorescent probe for detection of doxorubicin. Opt. Mater. 2021, 114, 110941. [Google Scholar] [CrossRef]
- Zhang, D.; Jia, D.; Fang, Z.; Min, H.; Xu, X.; Li, Y. The detection of anthrax biomarker DPA by ratiometric fluorescence probe of carbon quantum dots and europium hybrid material based on poly(ionic)-liquid. Molecules 2023, 28, 6557. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Lin, L.; Wei, Y.; Li, W.; Nie, P.; He, Y.; Feng, X. Gold nanoparticles-mediated ratiometric fluorescence aptasensor for ultra-sensitive detection of Abscisic Acid. Biosens. Bioelectron. 2021, 190, 113311. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Cen, Y.; Sohail, M.; Xu, G.; Wei, F.; Shi, M.; Xu, X.; Song, Y.; Ma, Y.; Hu, Q. A ratiometric fluorescence universal platform based on N, Cu codoped carbon dots to detect metabolites participating in H2O2-generation reactions. ACS Appl. Mater. Interfaces 2017, 9, 33011–33019. [Google Scholar] [CrossRef]
- Shao, K.; Yang, Y.; Ye, S.; Gu, D.; Wang, T.; Teng, Y.; Shen, Z.; Pan, Z. Dual-colored carbon dots-based ratiometric fluorescent sensor for high-precision detection of alkaline phosphatase activity. Talanta 2020, 208, 120460. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Yang, Y.; Zhu, F.; Pu, Y.; You, X.; Liao, X. Efficient fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of dopamine using a dual-emission carbon dot-gold nanocluster nanohybrid. J. Photochem. Photobiol. A 2021, 411, 113195. [Google Scholar] [CrossRef]
- Liang, S.; Deng, X.; Fan, Y.; Li, J.; Wang, M.; Zhang, Z. A ratiometric fluorometric heparin assay based on the use of CdTe and polyethyleneimine-coated carbon quantum dots. Microchim. Acta 2018, 185, 519. [Google Scholar] [CrossRef]
- Bao, J.; Mei, J.; Cheng, X.; Ren, D.; Xu, G.; Wei, F.; Sun, Y.; Hu, Q.; Cen, Y. A ratiometric lanthanide-free fluorescent probe based on two-dimensional metal-organic frameworks and carbon dots for the determination of anthrax biomarker. Microchim. Acta 2021, 188, 84. [Google Scholar] [CrossRef]
- Nemati, F.; Zare-Dorabei, R. A ratiometric probe based on Ag2S quantum dots and graphitic carbon nitride nanosheets for the fluorescent detection of Cerium. Talanta 2019, 200, 249–255. [Google Scholar] [CrossRef]
- Chen, T.H.; Tseng, W.L. Self-assembly of monodisperse carbon dots into high-brightness nanoaggregates for cellular uptake imaging and iron(III) sensing. Anal. Chem. 2017, 89, 11348–11356. [Google Scholar] [CrossRef]
- Li, Z.; Guo, S.; Yuan, Z.; Lu, C. Carbon quantum dot-gold nanocluster nanosatellite for ratiometric fluorescence probe and imaging for hydrogen peroxide in living cells. Sens. Actuators B Chem. 2017, 241, 821–827. [Google Scholar] [CrossRef]
- Yan, X.; Chen, Z.; Huang, Y.; Kang, C.; Yu, R. Generalized ratiometric fluorescence nanosensors based on carbon dots and an advanced chemometric model. Talanta 2019, 192, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, C.; Wang, Y.; Rao, H.; Lu, Z.; Lu, C.; Shan, Z.; Ren, B.; Wu, W.; Wang, X. Green and high-yield synthesis of carbon dots for ratiometric fluorescent determination of pH and enzyme reactions. Mater. Sci. Eng. C 2020, 117, 111264. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Pan, C.; Cao, H.; Yue, M.; Wang, L.; Liang, G. Highly sensitive and selective dual-emission ratiometric fluorescence detection of dopamine based on carbon dots-gold nanoclusters hybrid. Sens. Actuators B Chem. 2018, 265, 371–377. [Google Scholar] [CrossRef]
- Shangguan, J.; He, D.; He, X.; Wang, K.; Xu, F.; Liu, J.; Tang, J.; Yang, X.; Huang, J. Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing. Anal. Chem. 2016, 88, 7837–7843. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, L.; Peng, H.; Xu, J.; Wang, F.; Qi, R.; Xu, Z.; Zhang, W. Multi-doped carbon dots with ratiometric pH sensing properties for monitoring enzyme catalytic reactions. Chem. Commun. 2016, 52, 9247–9250. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, L.; Liang, J.; Liu, L.; Han, H. A novel ratiometric probe based on nitrogen-doped carbon dots and rhodamine B isothiocyanate for detection of Fe3+ in aqueous solution. J. Anal. Methods Chem. 2016, 2016, 4939582. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dong, Y.; Ma, Y.; Han, Y.; Ma, S.; Chen, H.; Chen, X. One-step synthesis of red/green dual-emissive carbon dots for ratiometric sensitive ONOO− probing and cell imaging. Nanoscale 2018, 10, 13589–13598. [Google Scholar] [CrossRef]
- Liu, P.; Liu, J.; Xu, Y. Ratiometric fluorescence determination of hydrogen peroxide using carbon dot-embedded Ag@EuWO4(OH) nanocomposites. Microchim. Acta 2020, 187, 369. [Google Scholar] [CrossRef]
- Molla, A.; Lee, H.; Ju, Y.; Choi, J.; Kim, J. Ratiometric fluorescence probe based on monochromatic dual-emission carbon nanodots with fluorescence spectral change. Dye. Pigm. 2022, 197, 109883. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, P.; Tian, Y.; Zhang, Y.; Yang, H.; Chen, S.; Zeng, R.; Long, Y.; Chen, J. Real-time monitoring of endogenous cysteine levels in living cells using a CD-based ratiometric fluorescent nanoprobe. Anal. Bioanal. Chem. 2018, 410, 4379–4386. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Fu, Y.; Wu, Y.; Chen, L.; Liang, J. A ratiometric fluorescent probe for pH detection based on Ag2S quantum dots-carbon dots nanohybrids. R. Soc. Open Sci. 2020, 7, 200482. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Xu, S. Visualizing BPA by molecularly imprinted ratiometric fluorescence sensor based on dual emission nanoparticles. Biosens. Bioelectron. 2017, 92, 147–153. [Google Scholar] [CrossRef]
- Chen, B.; Liu, M.; Gao, Y.; Chang, S.; Qian, R.; Li, D. Design and applications of carbon dots-based ratiometric fluorescent probes: A review. Nano Res. 2023, 16, 1064–1083. [Google Scholar] [CrossRef]
- Yang, X.; Li, C.; Li, P.; Fu, Q. Ratiometric optical probes for biosensing. Theranostics 2023, 13, 2632–2656. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C.; Zhuo, H.; Zhou, D.; Song, Q. The function-oriented precursor selection for the preparation of carbon dots. Nano Res. 2023, 16, 11221–11249. [Google Scholar] [CrossRef]
- Yan, F.; Bai, Z.; Liu, F.; Zu, F.; Zhang, R.; Xu, J.; Chen, L. Ratiometric fluorescence probes based on carbon dots. Curr. Org. Chem. 2018, 22, 57–66. [Google Scholar] [CrossRef]
- Gui, R.; Jin, H.; Bu, X.; Fu, Y.; Wang, Z.; Liu, Q. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord. Chem. Rev. 2019, 383, 82–103. [Google Scholar] [CrossRef]
- Han, Y.; Yang, W.; Luo, X.; He, X.; Zhao, H.; Tang, W.; Yue, T.; Li, Z. Carbon dots based ratiometric fluorescent sensing platform for food safety. Crit. Rev. Food Sci. Nutr. 2022, 62, 244–260. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; Xu, K.; Deng, D.; Zhang, Q.; Luo, L. Current progress of ratiometric fluorescence sensors based on carbon dots in foodborne contaminant detection. Biosensors 2023, 13, 233. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.; Zhao, Z.; Shi, H.; Feng, J.; Yang, Y.; Shi, L. Ratiometric fluorescent carbon dots for enantioselective sensing of L-lysine and pH discrimination in vivo and in vitro. Sens. Actuators B Chem. 2022, 362, 131792. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, C.; Yu, X.; Li, J.; Wang, Z.; Zhang, Z.; Liu, B. Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection. J. Mater. Chem. C 2018, 6, 9636–9641. [Google Scholar] [CrossRef]
- Yu, C.; Li, X.; Zeng, F.; Zheng, F.; Wu, S. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem. Commun. 2013, 49, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cao, H.; He, Y.; Pan, C.; Sun, T.; Zhang, X.; Wang, C.; Liang, G. Facile preparation of amino-carbon dots/gold nanoclusters FRET ratiometric fluorescent probe for sensing of Pb2+/Cu2+. Sens. Actuators B Chem. 2019, 282, 78–84. [Google Scholar] [CrossRef]
- Tao, H.; Zhang, Z.; Cao, Q.; Li, L.; Xu, S.; Jiang, C.; Li, Y.; Liu, Y. Ratiometric fluorescent sensors for nitrite detection in the environment based on carbon dot/Rhodamine B systems. RSC Adv. 2022, 12, 12655–12662. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Wang, Y.; Sun, M.; Luo, Y.; Yu, H.; Zhang, L. Preparation of carbon dots-doped terbium phosphonate coordination polymers as ratiometric fluorescent probe for citrate detection. Spectrochim. Acta Part A 2022, 268, 120656. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, F.; Guo, R.; Chen, Y.; Wang, Z.; Zhao, C.; Zheng, Y.; Weng, S.; Lin, X. A signal-on ratiometric fluorometric heparin assay based on the direct interaction between amino-modified carbon dots and DNA. Microchim. Acta 2018, 185, 260. [Google Scholar] [CrossRef]
- Hao, T.; Wei, X.; Nie, Y.; Xu, Y.; Lu, K.; Yan, Y.; Zhou, Z. Surface modification and ratiometric fluorescence dual function enhancement for visual and fluorescent detection of glucose based on dual-emission quantum dots hybrid. Sens. Actuators B Chem. 2016, 230, 70–76. [Google Scholar] [CrossRef]
- Gui, R.; Bu, X.; He, W.; Jin, H. Ratiometric fluorescence, solution-phase and filter-paper visualization detection of ciprofloxacin based on dual-emitting carbon dot/silicon dot hybrids. New J. Chem. 2018, 42, 16217–16225. [Google Scholar] [CrossRef]
- Song, W.; Duan, W.; Liu, Y.; Ye, Z.; Chen, Y.; Chen, H.; Qi, S.; Wu, J.; Liu, D.; Xiao, L.; et al. Ratiometric detection of intracellular lysine and pH with one-pot synthesized dual emissive carbon dots. Anal. Chem. 2017, 89, 13626–13633. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; He, X.; Huang, Y.; Liu, X.; Zhao, L.; Wang, X.; Sun, Y.; Ma, P.; Song, D. Lysosome-targeted ratiometric fluorescent sensor for monitoring pH in living cells based on one-pot-synthesized carbon dots. Microchim. Acta 2020, 187, 478. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, D.; Qiu, Y.; Liu, X.; Huang, L.; Wen, H.; Hu, J. An europium functionalized carbon dot-based fluorescence test paper for visual and quantitative point-of-care testing of anthrax biomarker. Talanta 2020, 220, 121377. [Google Scholar] [CrossRef]
- Bu, X.; Fu, Y.; Jiang, X.; Jin, H.; Gui, R. Self-assembly of DNA-templated copper nanoclusters and carbon dots for ratiometric fluorometric and visual determination of arginine and acetaminophen with a logic-gate operation. Microchim. Acta 2020, 187, 154. [Google Scholar] [CrossRef]
- Hu, S.R.; Yang, C.R.; Huang, Y.F.; Huang, C.C.; Chen, Y.L.; Chang, H.T. Ratiometric fluorescence probe of vesicle-like carbon dots and gold clusters for quantitation of cholesterol. Chemosensors 2022, 10, 160. [Google Scholar] [CrossRef]
- An, J.; Chen, R.; Chen, M.; Hu, Y.; Lyu, Y.; Liu, Y. An ultrasensitive turn-on ratiometric fluorescent probes for detection of Ag+ based on carbon dots/SiO2 and gold nanoclusters. Sens. Actuators B Chem. 2021, 329, 129097. [Google Scholar] [CrossRef]
- Zhou, W.; Hu, Z.; Wei, J.; Lu, H.; Dai, H.; Zhao, J.; Zhang, W.; Guo, R. A ratiometric fluorescent probe based on PCN-224 for rapid and ultrasensitive detection of copper ions. Compos. Commun. 2022, 33, 101221. [Google Scholar] [CrossRef]
- Gong, W.; Nan, H.; Peng, H.; Wang, Y.; Dong, Z.; Zhang, Z.; Cao, X.; Liu, Y. A ratiometric fluorescent sensor for UO22+ detection based on Ag+-modified gold nanoclusters hybrid via photoinduced electron transfer (PET) mechanism. Microchem. J. 2023, 190, 108725. [Google Scholar] [CrossRef]
- Chen, X.; Luan, Y.; Wang, N.; Zhou, Z.; Ni, X.; Cao, Y.; Zhang, G.; Lai, Y.; Yang, W. Ratiometric fluorescence nanosensors based on core-shell structured carbon/CdTe quantum dots and surface molecularly imprinted polymers for the detection of sulfadiazine. J. Sep. Sci. 2018, 41, 4394–4401. [Google Scholar] [CrossRef]
- Heng, H.; Ma, D.; Gu, Q.; Li, J.; Jin, H.; Shen, P.; Wei, J.; Wang, Z. A core-shell structure ratiometric fluorescent probe based on carbon dots and Tb3+ for the detection of anthrax biomarker. Spectrochim. Acta Part A 2023, 299, 122793. [Google Scholar] [CrossRef] [PubMed]
- Ran, H.; Lin, Z.; Hong, C.; Zeng, J.; Yao, Q.; Huang, Z. Self-assembly PS@dual-emission ratiometric fluorescence probe coupled with core-shell structured MIP for the detection of malachite green in fish. J. Photochem. Photobiol. A 2019, 372, 260–269. [Google Scholar] [CrossRef]
- Liu, M.; Gao, Z.; Yu, Y.; Su, R.; Huang, R.; Qi, W.; He, Z. Molecularly imprinted core-shell CdSe@SiO2/CDs as a ratiometric fluorescent probe for 4-nitrophenol sensing. Nanoscale Res. Lett. 2018, 13, 27. [Google Scholar] [CrossRef]
- Lu, H.; Yu, C.; Zhang, Y.; Xu, S. Efficient core shell structured dual response ratiometric fluorescence probe for determination of H2O2 and glucose via etching of silver nanoprisms. Anal. Chim. Acta 2019, 1048, 178–185. [Google Scholar] [CrossRef]
- Ghasemi, F.; Hormozi-Nezhad, M.R.; Mahmoudi, M. A new strategy to design colorful ratiometric probes and its application to fluorescent detection of Hg(II). Sens. Actuators B Chem. 2018, 259, 894–899. [Google Scholar] [CrossRef]
- Zhang, Z.; Tao, H.; Cao, Q.; Li, L.; Xu, S.; Li, Y.; Liu, Y. Ratiometric fluorescence sensor for sensitive detection of inorganic phosphate in environmental samples. Anal. Bioanal. Chem. 2022, 414, 3507–3515. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Guo, Y.; Li, L.; Lin, D.; Li, Y.; Xu, S.; Jiang, C. Ratiometric fluorescent sensor based on hydrogen-bond triggering the internal filter effect for enzyme-free and visual monitoring pesticide residues. ACS Sustain. Chem. Eng. 2023, 11, 11032–11040. [Google Scholar] [CrossRef]
- Chen, P.; Xu, X.; Ji, J.; Wu, J.; Lu, T.; Xia, Y.; Wang, L.; Fan, J.; Jin, Y.; Zhang, L.; et al. Specific and visual assay of iodide ion in human urine via redox pretreatment using ratiometric fluorescent test paper printed with dimer DNA silver nanoclusters and carbon dots. Anal. Chim. Acta 2020, 1138, 99–107. [Google Scholar] [CrossRef]
- Qu, Z.; Yu, T.; Bi, L. A dual-channel ratiometric fluorescent probe for determination of the activity of tyrosinase using nitrogen-doped graphene quantum dots and dopamine-modified CdTe quantum dots. Microchim. Acta 2019, 186, 635. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, Y.; Liu, Y.; Shi, L.; Yang, D. Multi-carbon dots and aptamer based signal amplification ratiometric fluorescence probe for protein tyrosine kinase 7 detection. J. Nanobiotechnol. 2021, 19, 47. [Google Scholar] [CrossRef]
- Liu, C.; Ning, D.; Zhang, C.; Liu, Z.; Zhang, R.; Zhao, J.; Zhao, T.; Liu, B.; Zhang, Z. Dual-colored carbon dot ratiometric fluorescent test paper based on a specific spectral energy transfer for semiquantitative assay of copper ions. ACS Appl. Mater. Interfaces 2017, 9, 18897–18903. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yu, Z.; He, J.; Zhang, H.; Liu, Y.; Lei, B. Ratiometric and selective fluorescent sensor for Fe(III) and bovine serum albumin based on energy transfer. Sens. Actuators B Chem. 2018, 262, 228–235. [Google Scholar] [CrossRef]
- Sun, X.; Cai, L.; He, W.; Cao, X.; Liu, B.; Wang, H. A novel ratiometric fluorescent probe for water content in ethanol and temperature sensing. Spectrochim. Acta Part A 2022, 264, 120266. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wei, X.; Li, H.; Zheng, X.; Lu, K.; Liu, X.; Wang, K.; Yan, Y. Boric acid functionalized ratiometric fluorescence probe for sensitive and on-site naked eye determination of dopamine based on two different kinds of quantum dots. RSC Adv. 2016, 6, 72715–72721. [Google Scholar] [CrossRef]
- Xiao, W.; Liu, F.; Yan, G.; Shi, W.; Peng, K.; Yang, X.; Li, X.; Yu, H.; Shi, Z.; Zeng, H. Yttrium vanadates based ratiometric fluorescence probe for alkaline phosphatase activity sensing. Colloids Surf. B 2020, 185, 110618. [Google Scholar] [CrossRef]
- Yang, S.; Guo, W.; Sun, X. Electrostatic association complex of a polymer capped CdTe(S) quantum dot and a small molecule dye as a robust ratiometric fluorescence probe of copper ions. Dye. Pigm. 2018, 158, 114–120. [Google Scholar] [CrossRef]
- Paydar, S.; Feizi, F.; Shamsipur, M.; Barati, A.; Chehri, N.; Taherpour, A.; Jamshidi, M. An ideal ratiometric fluorescent probe provided by the surface modification of carbon dots for the determination of Pb2+. Sens. Actuators B Chem. 2022, 369, 132243. [Google Scholar] [CrossRef]
- Chen, S.; Li, S.; Liu, X.; Shi, B.; Huang, Y.; Zhao, S. Nitrogen and sulfur co-doped carbon dot-based ratiometric fluorescent probe for Zn2+ sensing and imaging in living cells. Microchim. Acta 2022, 189, 107. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, X.; Meng, D.; Jiang, H.; Zhou, Y.; Feng, S.; Mu, Z.; Yang, Y. Dual-emitting N/S-doped carbon dots-based ratiometric fluorescent and light scattering sensor for high precision detection of Fe(III) ions. J. Fluoresc. 2020, 30, 1007–1013. [Google Scholar] [CrossRef]
- Zheng, Y.; Wan, Y.; Wei, Y.; Yu, Y. One-pot synthesis of dual-emissive carbon dots for ratiometric fluorescent determination of Hg2+. J. Fluoresc. 2023, 33, 1941–1948. [Google Scholar] [CrossRef]
- Lu, W.; Liu, Y.; Zhang, Z.; Xiao, J.; Liu, C. Dual emissive amphiphilic carbon dots as ratiometric fluorescent probes for the determination of critical micelle concentration of surfactants. Anal. Methods 2022, 14, 672–677. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, C.; Li, Q.; Zhang, T.; Chen, J.; Ji, W.; Wei, Y. A ratiometric probe based on carbon dots and calcein & Eu3+ for the fluorescent detection of sodium tripolyphosphate. J. Fluoresc. 2023, 33, 965–972. [Google Scholar] [PubMed]
- Pang, S.; Liu, S. Dual-emission carbon dots for ratiometric detection of Fe3+ ions and acid phosphatase. Anal. Chim. Acta 2020, 1105, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, M.; Yuan, L.; Mi, Z.; Li, C.; Liu, Z.; Chen, Z.; Wang, L.; Feng, F.; Wu, L. A novel ratiometric fluorescent probe based on dual-emission carbon dots for highly sensitive detection of salicylic acid. Spectrochim. Acta Part A 2023, 303, 123232. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Jiao, Y.; Zhang, H.; Lu, W.; Liu, Y.; Han, H.; Gong, X.; Li, L.; Shuang, S.; Dong, C. One-step synthesis of a dual-emitting carbon dot-based ratiometric fluorescent probe for the visual assay of Pb2+ and PPi and development of a paper sensor. J. Mater. Chem. B 2019, 7, 5502–5509. [Google Scholar] [CrossRef] [PubMed]
- Behzadifar, S.; Bagheri Pebdeni, A.; Hosseini, M.; Mohammadnejad, J. A new ratiometric fluorescent detection of Glucose-6-phosphate dehydrogenase enzyme based on dually emitting carbon dots and silver nanoparticles. Microchem. J. 2022, 182, 107947. [Google Scholar] [CrossRef]
- Guo, L.; Song, Y.; Cai, K.; Wang, L. “On-off” ratiometric fluorescent detection of Hg2+ based on N-doped carbon dots-rhodamine B@TAPT-DHTA-COF. Spectrochim. Acta Part A 2020, 227, 117703. [Google Scholar] [CrossRef] [PubMed]
- Babaee, E.; Barati, A.; Gholivand, M.B.; Taherpour, A.; Zolfaghar, N.; Shamsipur, M. Determination of Hg2+ and Cu2+ ions by dual-emissive Ag/Au nanocluster/carbon dots nanohybrids: Switching the selectivity by pH adjustment. J. Hazard. Mater. 2019, 367, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, C.; Li, N.; Zhang, S.; Wang, Z. Ratiometric fluorescent test paper based on silicon nanocrystals and carbon dots for sensitive determination of mercuric ions. R. Soc. Open Sci. 2018, 5, 171922. [Google Scholar] [CrossRef]
- Liu, P.; Hao, R.; Sun, W.; Lin, Z.; Jing, T.; Yang, H. A “bottle-around-ship” method to encapsulated carbon nitride and CdTe quantum dots in ZIF-8 as the dual emission fluorescent probe for detection of mercury (II) ion. Anal. Sci. 2022, 38, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Yuan, C.; Liu, B.; Jiang, C.; Guan, G.; Han, M. Ratiometric fluorescence detection of mercuric ion based on the nanohybrid of fluorescence carbon dots and quantum dots. Anal. Chim. Acta 2013, 786, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yao, J.; Ning, G.; Li, B.; Mu, P.; Xiao, Q. Ultrasensitive ratiometric fluorescent probes for Hg(II) and trypsin activity based on carbon dots and metalloporphyrin via a target recycling amplification strategy. Analyst 2022, 147, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yu, H.; Zhang, K.; Sun, M.; Zhang, Y.; Wang, X.; Wang, S. Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions. Nano Res. 2016, 9, 2088–2096. [Google Scholar] [CrossRef]
- Jia, K.; Yi, K.; Zhang, W.; Yan, P.; Zhang, S.; Liu, X. Carbon nanodots calibrated fluorescent probe of QD@amphiphilic polyurethane for ratiometric detection of Hg (II). Sens. Actuators B Chem. 2022, 370, 132443. [Google Scholar] [CrossRef]
- Li, W.; Hu, X.; Li, Q.; Shi, Y.; Zhai, X.; Xu, Y.; Li, Z.; Huang, X.; Wang, X.; Shi, J.; et al. Copper nanoclusters @ nitrogen-doped carbon quantum dots-based ratiometric fluorescence probe for lead (II) ions detection in porphyra. Food Chem. 2020, 320, 126623. [Google Scholar] [CrossRef]
- Lu, H.; Yu, C.; Xu, S. A dual reference ion-imprinted ratiometric fluorescence probe for simultaneous detection of silver (I) and lead (II). Sens. Actuators B Chem. 2019, 288, 691–698. [Google Scholar] [CrossRef]
- Yi, K.; Zhang, L. Embedding dual fluoroprobe in metal-organic frameworks for continuous visual recognition of Pb2+ and PO43− via fluorescence ‘turn-off-on’ response: Agar test paper and fingerprint. J. Hazard. Mater. 2020, 389, 122141. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Dong, L.; Yang, L.; Wang, J.; Li, S.; Lv, H.; Ji, X.; Liu, J.; Wang, S. Integration of metal-organic frameworks with Bi-nanoprobes as dual-emissive ratiometric sensors for fast and highly sensitive determination of food hazards. Molecules 2022, 27, 2356. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Y.; Liu, J.; Han, Y.; Ma, S.; Chen, X. Ratiometric fluorescent detection of chromium(VI) in real samples based on dual emissive carbon dots. Talanta 2018, 185, 249–257. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, L.; Liu, J.; Wang, Q.; Jiao, L. A label-free yellow-emissive carbon dot-based nanosensor for sensitive and selective ratiometric detection of chromium (VI) in environmental water samples. Mater. Chem. Phys. 2020, 248, 122912. [Google Scholar] [CrossRef]
- Bogireddy, N.K.R.; Sotelo Rios, S.E.; Agarwal, V. Simple one step synthesis of dual-emissive heteroatom doped carbon dots for acetone sensing in commercial products and Cr (VI) reduction. Chem. Eng. J. 2021, 414, 128830. [Google Scholar] [CrossRef]
- Mei, X.; Wang, D.; Wang, S.; Li, J.; Dong, C. Synthesis of intrinsic dual-emission type N,S-doped carbon dots for ratiometric fluorescence detection of Cr (VI) and application in cellular imaging. Anal. Bioanal. Chem. 2022, 414, 7253–7263. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Li, J.; Cai, H.; Shao, Y.; Zhang, G.; Chen, L.; Wang, Y.; Zong, H.; Yin, Y. Carbon dots/Ag nanoclusters-based fluorescent probe for ratiometric and visual detection of Cu2+. J. Alloys Compd. 2023, 945, 169227. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Chen, X.; Yang, B.; Yang, L.; Jiang, C.; Zhang, Z. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots–quantum dots for the visual determination of copper ions. Nanoscale 2016, 8, 5977–5984. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Liu, A.; Zeng, Y.; Cai, H.; Ye, S.; Li, H.; Yan, W.; Zhou, F.; Song, J.; Qu, J. Noval dual-emission fluorescence carbon dots as a ratiometric probe for Cu2+ and ClO− detection. Nanomaterials 2021, 11, 1232. [Google Scholar] [CrossRef]
- Luo, F.; Zhu, M.; Liu, Y.; Sun, J.; Gao, F. Ratiometric and visual determination of copper ions with fluorescent nanohybrids of semiconducting polymer nanoparticles and carbon dots. Spectrochim. Acta Part A 2023, 295, 122574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, Y.; Lu, H.; Gan, F. A ratiometric fluorescence and colorimetric dual-mode sensing platform based on sulfur quantum dots and carbon quantum dots for selective detection of Cu2+. Anal. Bioanal. Chem. 2022, 414, 2471–2480. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Guo, L.; Chen, L.; Wang, L.; Song, Y. Self-exfoliating double-emission N-doped carbon dots in covalent organic frameworks for ratiometric fluorescence “off–on” Cu2+ detection. ACS Appl. Nano Mater 2022, 5, 1339–1347. [Google Scholar] [CrossRef]
- Weerasinghe, J.; Scott, J.; Deshan, A.D.K.; Chen, D.; Singh, A.; Sen, S.; Sonar, P.; Vasilev, K.; Li, Q.; Ostrikov, K. Monochromatic blue and switchable blue-green carbon quantum dots by room-temperature air plasma processing. Adv. Mater. Technol. 2022, 7, 2100586. [Google Scholar] [CrossRef]
- Wu, H.; Tong, C. Ratiometric fluorometric determination of silver(I) by using blue-emitting silicon- and nitrogen-doped carbon quantum dots and red-emitting N-acetyl-L-cysteine-capped CdTe quantum dots. Microchim. Acta 2019, 186, 723. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Mao, J.; Lu, Y.; Liu, Y.; Wang, S. Construction of ratiometric fluorescent nanosensors based on carbon dots dual emission strategy for high-sensitivity visual detection of Ag+. Int. J. Environ. Anal. Chem. 2023, 1–15. [Google Scholar] [CrossRef]
- You, J.; Ji, J.; Wu, J.; Wang, S.; Chen, P.; Mao, R.; Jin, Y.; Zhang, L.; Du, S. Ratiometric fluorescent test pen filled with a mixing ink of carbon dots and CdTe quantum dots for portable assay of silver ion on paper. Microchim. Acta 2020, 187, 391. [Google Scholar] [CrossRef] [PubMed]
- Shokri, R.; Amjadi, M. A ratiometric fluorescence sensor for triticonazole based on the encapsulated boron-doped and phosphorous-doped carbon dots in the metal organic framework. Spectrochim. Acta Part A 2021, 246, 118951. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, Y.; Ren, X.; He, X.; Li, W.; Zhang, Y. Dual-reverse-signal ratiometric fluorescence method for malachite green detection based on multi-mechanism synergistic effect. Spectrochim. Acta Part A 2022, 276, 121196. [Google Scholar] [CrossRef]
- Mei, H.; Zhu, X.; Li, Z.; Jiang, J.; Wang, H.; Wang, X.; Zhou, P. Manganese dioxide nanosheet-modulated ratiometric fluoroprobe based on carbon quantum dots from okra for selective and sensitive dichlorvos detection in foods. Food Chem. 2024, 434, 137507. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xu, M.; Chen, Y.; Zhang, H.; Shen, Y.; Tang, Y. A highly sensitive and selective nano-fluorescent probe for ratiometric and visual detection of oxytetracycline benefiting from dual roles of nitrogen-doped carbon dots. Nanomaterials 2022, 12, 4306. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, X.; Wu, N.; Xu, M.; Wang, M.; Zhang, L.; Yang, W. In-situ synthesis of carbon dots-embedded europium metal-organic frameworks for ratiometric fluorescence detection of Hg2+ in aqueous environment. Anal. Chim. Acta 2021, 1141, 13–20. [Google Scholar] [CrossRef]
- Hu, F.; Fu, Q.; Li, Y.; Yan, C.; Xiao, D.; Ju, P.; Hu, Z.; Li, H.; Ai, S. Zinc-doped carbon quantum dots-based ratiometric fluorescence probe for rapid, specific, and visual determination of tetracycline hydrochloride. Food Chem. 2024, 431, 137097. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, Y.; Bu, T.; Sun, X.; Zhe, T.; Huang, C.; Yao, S.; Wang, L. Silicon-doped carbon quantum dots with blue and green emission are a viable ratiometric fluorescent probe for hydroquinone. Microchim. Acta 2019, 186, 399. [Google Scholar] [CrossRef]
- Jalili, R.; Khataee, A. Application of molecularly imprinted polymers and dual-emission carbon dots hybrid for ratiometric determination of chloramphenicol in milk. Food Chem. Toxicol. 2020, 146, 111806. [Google Scholar] [CrossRef]
- Lu, C.; Liu, G.; Yang, Z.; Wang, Y.; Rao, H.; Zhang, W.; Jing, B.; Wang, X. A ratiometric fluorometric ciprofloxacin assay based on the use of riboflavin and carbon dots. Microchim. Acta 2019, 187, 37. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Shen, L.; Liu, Y.; Hu, Y.; Long, W.; Fu, H.; She, Y. A sensitized ratiometric fluorescence probe based on N/S doped carbon dots and mercaptoacetic acid capped CdTe quantum dots for the highly selective detection of multiple tetracycline antibiotics in food. Food Chem. 2023, 421, 136105. [Google Scholar] [CrossRef]
- Rao, H.; Dai, Y.; Ge, H.; Liu, X.; Chen, B.; Zou, P.; Wang, X.; Wang, Y. Visual and fluorescence detection of pyrogallol based on a ratiometric fluorescence-enzyme system. New J. Chem. 2017, 41, 6630–6637. [Google Scholar] [CrossRef]
- Fan, Y.J.; Su, M.; Shi, Y.E.; Liu, X.T.; Shen, S.G.; Dong, J.X. A ratiometric fluorescent sensor for tetracyclines detection in meat based on pH-dependence of targets with lanthanum-doped carbon dots as probes. Anal. Bioanal. Chem. 2022, 414, 2597–2606. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, J.; Gu, L.; Tang, Y.; Zhang, X.; Huang, X.; Shen, X.; Zhai, W.; Fodjo, E.K.; Kong, C. Ratiometric fluorescence immunoassay based on carbon quantum dots for sensitive detection of malachite green in fish. Biosensors 2023, 13, 38. [Google Scholar] [CrossRef]
- Sun, X.; Jiang, M.; Chen, L.; Niu, N. Construction of ratiometric fluorescence MIPs probe for selective detection of tetracycline based on passion fruit peel carbon dots and europium. Microchim. Acta 2021, 188, 297. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xing, H.; Liu, W.; Wang, Z.; Hao, Y.; Wang, H.; Dong, W.; Liu, Y.; Shuang, S.; Dong, C.; et al. 11-Mercaptoundecanoic acid-functionalized carbon dots as a ratiometric optical probe for doxorubicin detection. ACS Appl. Nano Mater 2021, 4, 13734–13746. [Google Scholar] [CrossRef]
- Chen, A.; Li, R.; Zhong, Y.; Deng, Q.; Yin, X.; Li, H.; Kong, L.; Yang, R. A novel chiral fluorescence probe based on carbon dots-copper(II) system for ratio fluorescence detection of gatifloxacin. Sens. Actuators B Chem. 2022, 359, 131602. [Google Scholar] [CrossRef]
- Xiang, G.; Ren, Y.; Xia, Y.; Mao, W.; Fan, C.; Guo, S.; Wang, P.; Yang, D.; He, L.; Jiang, X. Carbon-dot-based dual-emission silica nanoparticles as a ratiometric fluorescent probe for bisphenol A. Spectrochim. Acta Part A 2017, 177, 153–157. [Google Scholar] [CrossRef]
- Shen, J.; Fan, Z. Construction of nanohybrid Tb@CDs/GSH-CuNCs as a ratiometric probe to detect phosphate anion based on aggregation-induced emission and FRET mechanism. Microchim. Acta 2023, 190, 427. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Zeng, Y.; Li, L.; Luo, F.; Qiu, B.; Lin, Z.; Guo, L. Ratiometric fluorescent hydrogel test kit for on-spot visual detection of nitrite. ACS Sens. 2019, 4, 1252–1260. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Chen, L.; Du, C.; Wang, Y. A ratiometric fluorescence probe of dopamine-functionalized carbon nanodots for hypochlorite detection. Chemosensors 2022, 10, 383. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Jiao, Y.; Lu, W.; Shuang, S.; Dong, C. Highly sensitive fluorescent carbon dots probe with ratiometric emission for the determination of ClO−. Analyst 2020, 145, 2212–2218. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Yang, M.; Zhang, M.; Jia, M. A ratiometric fluorescent sensor based on carbon dots for rapid determination of bisulfite in sugar. Food Chem. 2022, 392, 133265. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Chen, Y.; Zhang, H.; Niu, X.; Xu, L.; Ren, C.; Chen, X. Fluorescence resonance energy transfer-based ratiometric fluorescent assay for highly sensitive and selective determination of sulfide anions. Analyst 2015, 140, 6711–6719. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; He, J.; Wang, L.; Yu, Z.; Zhang, H.; Liu, Y.; Lei, B. Synthesis of double carbon dots co-doped mesoporous Al2O3 for ratiometric fluorescent determination of oxygen. Sens. Actuators B Chem. 2017, 251, 918–926. [Google Scholar] [CrossRef]
- Gao, J.; Li, Q.; Wang, C.; Tan, H. Copper (II)-mediated fluorescence of lanthanide coordination polymers doped with carbon dots for ratiometric detection of hydrogen sulfide. Sens. Actuators B Chem. 2017, 253, 27–33. [Google Scholar] [CrossRef]
- Zou, G.Y.; Guo, L.; Chen, S.; Liu, N.Z.; Yu, Y.L. Multifunctional ratiometric fluorescent sensing platform constructed by grafting various response groups on carbon dots with bromine active site for biosensing and bioimaging. Sens. Actuators B Chem. 2022, 357, 131376. [Google Scholar] [CrossRef]
- He, Q.; Zhuang, S.; Yu, Y.; Li, H.; Liu, Y. Ratiometric dual-emission of Rhodamine-B grafted carbon dots for full-range solvent components detection. Anal. Chim. Acta 2021, 1174, 338743. [Google Scholar] [CrossRef]
- Yang, F.; Lin, D.; Pan, L.; Zhu, J.; Shen, J.; Yang, L.; Jiang, C. Portable smartphone platform based on a single dual-emissive ratiometric fluorescent probe for visual detection of isopropanol in exhaled breath. Anal. Chem. 2021, 93, 14506–14513. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, J.; Zhang, K.; Zhu, H.; Yu, H.; Sun, M.; Huang, D.; Wang, S. Visualizing gaseous nitrogen dioxide by ratiometric fluorescence of carbon nanodots-quantum dots hybrid. Anal. Chem. 2015, 87, 2087–2093. [Google Scholar] [CrossRef]
- Shen, Y.; Wu, T.; Zhang, Y.; Ling, N.; Zheng, L.; Zhang, S.; Sun, Y.; Wang, X.; Ye, Y. Engineering of a dual-recognition ratiometric fluorescent nanosensor with a remarkably large Stokes shift for accurate tracking of pathogenic bacteria at the single-cell level. Anal. Chem. 2020, 92, 13396–13404. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Hu, H.; Liu, F.; Wang, J. A smartphone integrated platform for ratiometric fluorescent sensitive and selective determination of dipicolinic acid. Biosensors 2022, 12, 668. [Google Scholar] [CrossRef]
- Qin, S.; Yan, B. Dual-emissive ratiometric fluorescent probe based on Eu3+/C-dots@MOF hybrids for the biomarker diaminotoluene sensing. Sens. Actuators B Chem. 2018, 272, 510–517. [Google Scholar] [CrossRef]
- Xu, X.; He, L.; Long, Y.; Pan, S.; Liu, H.; Yang, J.; Hu, X. S-doped carbon dots capped ZnCdTe quantum dots for ratiometric fluorescence sensing of guanine. Sens. Actuators B Chem. 2019, 279, 44–52. [Google Scholar] [CrossRef]
- Zhang, T.; Gan, Z.; Zhen, S.; Hu, Y.; Hu, X. Ratiometric fluorescent probe based on carbon dots and Zn-doped CdTe QDs for detection of 6-Mercaptopurine. Opt. Mater. 2022, 134, 113196. [Google Scholar] [CrossRef]
- Guo, R.; Chen, B.; Li, F.; Weng, S.; Zheng, Z.; Chen, M.; Wu, W.; Lin, X.; Yang, C. Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sens. Actuators B Chem. 2018, 264, 193–201. [Google Scholar] [CrossRef]
- Miao, L.; Jiao, L.; Tang, Q.; Li, H.; Zhang, L.; Wei, Q. A nanozyme-linked immunosorbent assay for dual-modal colorimetric and ratiometric fluorescent detection of cardiac troponin I. Sens. Actuators B Chem. 2019, 288, 60–64. [Google Scholar] [CrossRef]
- Zhan, Z.; Mao, H.; Xue, M.; Han, G.; Zhou, G.; Zhang, Y. Ratiometric fluorescence detection of the angiotensin-converting enzyme via single-excitation and double-emission biomass-derived carbon quantum dots. Methods Appl. Fluoresc. 2024, 12, 015004. [Google Scholar] [CrossRef] [PubMed]
Ratiometric FL Probes | Construction Strategy | Analyte | LOD | Ref. |
---|---|---|---|---|
ZIF-8@g-CNQD/CdTe | Quench of CdTe | Hg2+ | ~46 nM | [111] |
Ag/Au@CDs nanohybrids | Ligand effect | Hg2+ | 7 nM | [109] |
YQDs + BCDs | Quench of CdTe | Hg2+ | 4.6 nM | [86] |
Dual-emissive CDs | Ligand effect | Hg2+ | 0.27 μM | [101] |
(NCDs-RhB@COF | Ligand effect | Hg2+ | 15.9 nM | [108] |
CDs and CdSe@ZnS QDs | Quench of CdSe@ZnS QDs | Hg2+ | 0.1 μM | [112] |
CDs and Si NCs | Quench of Si NCs | Hg2+ | 7.63 nM | [110] |
CuNCs-CNQDs | Aggregation of CuNCs | Pb2+ | 0.0031 mg L−1 | [116] |
N-CDs/AuNCs | Aggregation of AuNCs | Pb2+ | 0.5 μM | [67] |
GSH-modified CDs | Aggregation of CDs | Pb2+ | 2.7 nM | [98] |
Label-free CDs | Ligand effect | Pb2+ | 0.055 μM | [106] |
Y-CDs | IFE | Cr6+ | 2.3 nM | [121] |
Dual-emissive CDs | IFE | Cr6+ | 0.4 μM | [120] |
N-doped Dual-emissive CDs | IFE | Cr6+ | 3.2 µM | [122] |
Ag/Au@CDs nanohybrids | Aggregation of CDs | Cu2+ | 5 nM | [109] |
N-CDs/AuNCs | Quench of AuNCs | Cu2+ | 0.15 µM | [67] |
N-CDs/AgNCs | Aggregation of N-CDs/AgNCs | Cu2+ | 0.13 µM | [124] |
r-CDs and b-CDs (1:7) | Quench of b-CDs | Cu2+ | 8.82 nM | [92] |
Dual-emissive CQDs | Ligand effect | Cu2+ | - | [130] |
Dual-emissive N-CDs | Ligand effect | Cu2+ | 17.7 nM | [126] |
GCDs@RSPN | Quench of GCDs | Cu2+ | 0.58 μM | [127] |
Dual-mode SQD–CQD probe | IFE | Cu2+ | 31 nM and 47 nM | [128] |
MPA-CdTe and CDs | Quench of MPA-CdTe | Cu2+ | 0.36 nM | [125] |
CDs-PCN | Ligand effect | Cu2+ | 44 nM | [79] |
NCCOFTAPT-TT | Photoinduced electron transfer | Cu2+ | 17.3 nM | [129] |
P-CDs/R-CDs | Quench of P-CDs | Ag+ | 32 nM | [132] |
NALC-CdTe QDs and N,Si-CQDs | Quench of NALC-CdTe QDs | Ag+ | 1.7 nM | [131] |
CSs-AuNCs | Increased FL of AuNCs | Ag+ | 1.6 nM | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, X.; Wang, Z.; Wang, Y. Advances in Carbon Dot-Based Ratiometric Fluorescent Probes for Environmental Contaminant Detection: A Review. Micromachines 2024, 15, 331. https://doi.org/10.3390/mi15030331
Xing X, Wang Z, Wang Y. Advances in Carbon Dot-Based Ratiometric Fluorescent Probes for Environmental Contaminant Detection: A Review. Micromachines. 2024; 15(3):331. https://doi.org/10.3390/mi15030331
Chicago/Turabian StyleXing, Xinxin, Zhezhe Wang, and Yude Wang. 2024. "Advances in Carbon Dot-Based Ratiometric Fluorescent Probes for Environmental Contaminant Detection: A Review" Micromachines 15, no. 3: 331. https://doi.org/10.3390/mi15030331
APA StyleXing, X., Wang, Z., & Wang, Y. (2024). Advances in Carbon Dot-Based Ratiometric Fluorescent Probes for Environmental Contaminant Detection: A Review. Micromachines, 15(3), 331. https://doi.org/10.3390/mi15030331