Review of Droplet Printing Technologies for Flexible Electronic Devices: Materials, Control, and Applications
Abstract
:1. Introduction
2. Typical Generation Mechanisms of Droplet Printing
2.1. Inkjet Printing
2.2. Electrohydrodynamic Printing
3. Liquid Modification for Printing Materials
4. Control Methods for Droplet Printing
4.1. Generation Control for Droplet Printing
4.1.1. Assisted-Field Control
4.1.2. Electrical Excitation
4.1.3. Printing Quality Modeling
4.2. Deposition Control for Droplet Printing
4.2.1. Substrate Modification
4.2.2. Substrate Pre-Patterning
5. Application
5.1. Photoelectric Display
5.2. Micro/Nano Electronic System Components
5.3. Integrated Sensors
6. Summary and Future Prospects
- (1)
- Droplet printing technologies are still mostly limited to the laboratory research. Given the excellent performance of printed structures, there is urgent demand for the spread of novel printing methods to industrial fields. Parallel multi-channel printing is expected to be an effective way to realize the high-throughput production of droplets [95,96]. However, the accurate and controllable synchronous deposition of droplet arrays at high resolution is still a serious challenge. More intensive study focused on the ejection, motion, and interaction behavior of multi-channel printing droplets is still required.
- (2)
- Functional ink materials with novel properties have been applied in droplet printing to fabricate specific micro/nano structures [97,98]. However, the generation and motion of droplets during droplet printing occurs under a complex multi-physics field coupling process, easily leading to deformation, fusion, diffusion, breaking-up, etc. Given the need to obtain functional droplets with consistent characteristics, adaptive intelligent control algorithms must be further developed to reduce the attempt cost in terms of both human and material resources.
- (3)
- Composite droplets have exhibited various unexpected performances to promote the application potentials through the interaction effect among different nanomaterials [99,100]. Among them, droplet printing technologies have shown excellent advantages to prepare composite droplets with different liquid channels [101]. However, due to different solution properties like surface tension and conductivity of printing jets in micro/nano scale, the accurate and stable assemble of composite droplets with various dimensions and materials is still a serious challenge requiring concerns.
Author Contributions
Funding
Conflicts of Interest
References
- Onses, M.S.; Sutanto, E.; Ferreira, P.M.; Alleyne, A.G.; Rogers, J.A. Mechanisms, capabilities, and applications of high-resolution electrohydrodynamic jet printing. Small 2015, 11, 4237–4266. [Google Scholar] [CrossRef]
- Cai, S.; Sun, Y.; Wang, Z.; Yang, W.; Li, X.; Yu, H. Mechanisms, influencing factors, and applications of electrohydrodynamic jet printing. Nanotechnol. Rev. 2021, 10, 1046–1078. [Google Scholar] [CrossRef]
- Zhang, B.; He, J.; Li, X.; Xu, F.; Li, D. Micro/nanoscale electrohydrodynamic printing: From 2d to 3d. Nanoscale 2016, 8, 15376–15388. [Google Scholar] [CrossRef]
- Mkhize, N.; Murugappan, K.; Castell, M.R.; Bhaskaran, H. Electrohydrodynamic jet printed conducting polymer for enhanced chemiresistive gas sensors. J. Mater. Chem. C 2021, 9, 4591–4596. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, S.S.; Ahn, D.B.; Lee, J.; Byun, D.; Lee, S.Y. Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing. Sci. Adv. 2020, 6, eaaz1692. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.W.; Choong, Y.Y.C.; Kuo, C.N.; Low, H.Y.; Chua, C.K. 3d printed electronics: Processes, materials and future trends. Prog. Mater. Sci. 2022, 127, 100945. [Google Scholar] [CrossRef]
- Kang, G.; Chen, H.; Jiang, J.; Zheng, J.; Wang, X.; Li, W.; Cheng, X.; Fang, Z.; Zheng, G. The fuzzy control of electrohydrodynamic direct writing. AIP Adv. 2022, 12, 128. [Google Scholar] [CrossRef]
- Guo, L.; Duan, Y.; Huang, Y.; Yin, Z. Experimental study of the influence of ink properties and process parameters on ejection volume in electrohydrodynamic jet printing. Micromachines 2018, 9, 522. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Qi, L.; Luo, J.; Zhang, R.; Hu, K. Uniform droplet printing of graphene micro-rings based on multiple droplets overwriting and coffee-ring effect. Appl. Surf. Sci. 2020, 499, 143826. [Google Scholar] [CrossRef]
- Fukagawa, H.; Sasaki, T.; Tsuzuki, T.; Nakajima, Y.; Takei, T.; Motomura, G.; Hasegawa, M.; Morii, K.; Shimizu, T. Long-lived flexible displays employing efficient and stable inverted organic light-emitting diodes. Adv. Mater. 2018, 30, e1706768. [Google Scholar] [CrossRef]
- Kim, J.; Shim, H.J.; Yang, J.; Choi, M.K.; Kim, D.C.; Kim, J.; Hyeon, T.; Kim, D.H. Ultrathin quantum dot display integrated with wearable electronics. Adv. Mater. 2017, 29, 1700217. [Google Scholar] [CrossRef]
- Du, X.; Durgan, C.J.; Matthews, D.J.; Motley, J.R.; Tan, X.; Pholsena, K.; Arnadottir, L.; Castle, J.R.; Jacobs, P.G.; Cargill, R.S.; et al. Fabrication of a flexible amperometric glucose sensor using additive processes. ECS J. Solid State Sci. Technol. 2015, 4, P3069–P3074. [Google Scholar] [CrossRef]
- Cole, R.H.; Tang, S.Y.; Siltanen, C.A.; Shahi, P.; Zhang, J.Q.; Poust, S.; Gartner, Z.J.; Abate, A.R. Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells. Proc. Natl. Acad. Sci. USA 2017, 114, 8728–8733. [Google Scholar] [CrossRef]
- Yang, C.; Xiao, Y.; Hu, L.; Chen, J.; Zhao, C.X.; Zhao, P.; Ruan, J.; Wu, Z.; Yu, H.; Weitz, D.A.; et al. Stimuli-triggered multishape, multimode, and multistep deformations designed by microfluidic 3d droplet printing. Small 2023, 19, 2207073. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.M.; Lee, Y.S.; Jang, Y.; Byun, D.; Choa, S.-H. Electromechanical reliability of a flexible metal-grid transparent electrode prepared by electrohydrodynamic (ehd) jet printing. Microelectron. Reliab. 2016, 65, 151–159. [Google Scholar] [CrossRef]
- Chang, J.; He, J.; Lei, Q.; Li, D. Electrohydrodynamic printing of microscale pedot:Pss-peo features with tunable conductive/thermal properties. ACS Appl. Mater. Interfaces 2018, 10, 19116–19122. [Google Scholar] [CrossRef] [PubMed]
- Root, S.E.; Savagatrup, S.; Printz, A.D.; Rodriquez, D.; Lipomi, D.J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem. Rev. 2017, 117, 6467–6499. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.; Wang, H.; Tong, Y.; Dong, L.; Zhao, X.; Zhao, P.; Tang, Q.; Liu, Y. Flexible, conformable organic semiconductor proximity sensor array for electronic skin. Adv. Mater. Interfaces 2020, 7, 2000306. [Google Scholar] [CrossRef]
- Lemarchand, J.; Bridonneau, N.; Battaglini, N.; Carn, F.; Mattana, G.; Piro, B.; Zrig, S.; Noel, V. Challenges, prospects, and emerging applications of inkjet-printed electronics: A chemist’s point of view. Angew. Chem. Int. Ed. Engl. 2022, 61, e202200166. [Google Scholar] [CrossRef]
- Su, M.; Song, Y. Printable smart materials and devices: Strategies and applications. Chem. Rev. 2022, 122, 5144–5164. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, Q.; Lu, L.; Levkin, P.A. High-performance pressure sensors based on shaped gel droplet arrays. Small 2023, 20, e2305214. [Google Scholar] [CrossRef]
- Yang, C.; Wu, B.; Ruan, J.; Zhao, P.; Chen, L.; Chen, D.; Ye, F. 3d-printed biomimetic systems with synergetic color and shape responses based on oblate cholesteric liquid crystal droplets. Adv. Mater. 2021, 33, 2006361. [Google Scholar] [CrossRef]
- Datta, R.S.; Syed, N.; Zavabeti, A.; Jannat, A.; Mohiuddin, M.; Rokunuzzaman, M.; Yue Zhang, B.; Rahman, M.A.; Atkin, P.; Messalea, K.A.; et al. Flexible two-dimensional indium tin oxide fabricated using a liquid metal printing technique. Nat. Electron. 2020, 3, 51–58. [Google Scholar] [CrossRef]
- Lian, H.; Qi, L.; Luo, J.; Zhang, R.; Niu, J. Direct printing of graphene terahertz closed-ring resonator array from periodic single droplets via enhanced coffee-ring effect. Carbon 2023, 215, 118485. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Guo, X.; Yu, G. Conductive polymers for stretchable supercapacitors. Nano Res. 2019, 12, 1978–1987. [Google Scholar] [CrossRef]
- Grancarić, A.M.; Jerković, I.; Koncar, V.; Cochrane, C.; Kelly, F.M.; Soulat, D.; Legrand, X. Conductive polymers for smart textile applications. J. Ind. Text. 2017, 48, 612–642. [Google Scholar] [CrossRef]
- Tee, B.C.K.; Ouyang, J. Soft electronically functional polymeric composite materials for a flexible and stretchable digital future. Adv. Mater. 2018, 30, e1802560. [Google Scholar] [CrossRef]
- Minemawari, H.; Yamada, T.; Matsui, H.; Tsutsumi, J.y.; Haas, S.; Chiba, R.; Kumai, R.; Hasegawa, T. Inkjet printing of single-crystal films. Nature 2011, 475, 364–367. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, J.; Lee, S.; Lee, D.Y.; Lim, S.; Lee, J.; Kim, S.H. Organic thin-film transistors with sub-10-micrometer channel length with printed polymer/carbon nanotube electrodes. Org. Electron. 2018, 52, 165–171. [Google Scholar] [CrossRef]
- Kim, Y.; Bae, J.; Song, H.W.; An, T.K.; Kim, S.H.; Kim, Y.-H.; Park, C.E. Directionally aligned amorphous polymer chains via electrohydrodynamic-jet printing: Analysis of morphology and polymer field-effect transistor characteristics. ACS Appl. Mater. Interfaces 2017, 9, 39493–39501. [Google Scholar] [CrossRef]
- Can, T.T.T.; Kwack, Y.-J.; Choi, W.-S. Drop-on-demand patterning of mos2 using electrohydrodynamic jet printing for thin-film transistors. Mater. Des. 2021, 199, 109408. [Google Scholar] [CrossRef]
- Shigeta, K.; He, Y.; Sutanto, E.; Kang, S.; Le, A.-P.; Nuzzo, R.G.; Alleyne, A.G.; Ferreira, P.M.; Lu, Y.; Rogers, J.A. Functional protein microarrays by electrohydrodynamic jet printing. Anal. Chem. 2012, 84, 10012–10018. [Google Scholar] [CrossRef]
- Park, J.-U.; Lee, J.H.; Paik, U.; Lu, Y.; Rogers, J.A. Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with applications in biosensing and nanomaterials assembly. Nano Lett. 2008, 8, 4210–4216. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, X.; Bi, Z.; Li, G.; He, X.; Gao, X. Stamp-assisted printing of nanotextured electrodes for high-performance flexible planar micro-supercapacitors. Chem. Eng. J. 2018, 353, 499–506. [Google Scholar] [CrossRef]
- Yu, Y.; Xiao, X.; Zhang, Y.; Li, K.; Yan, C.; Wei, X.; Chen, L.; Zhen, H.; Zhou, H.; Zhang, S.; et al. Photoreactive and metal-platable copolymer inks for high-throughput, room-temperature printing of flexible metal electrodes for thin-film electronics. Adv. Mater. 2016, 28, 4926–4934. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Liu, M.; Qi, X.; Li, H.; Zhang, Y.F.; Li, Z.; Peng, Z.; Yang, J.; Qian, L.; Xu, Q.; et al. Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3d printing and hybrid hot embossing. Adv. Mater. 2021, 33, e2007772. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Y.; Zhao, Y.; Ren, Z.; Guo, C.F. Flexible electronics: Stretchable electrodes and their future. Adv. Funct. Mater. 2018, 29, 1805924. [Google Scholar] [CrossRef]
- Choi, M.K.; Yang, J.; Kang, K.; Kim, D.C.; Choi, C.; Park, C.; Kim, S.J.; Chae, S.I.; Kim, T.H.; Kim, J.H.; et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat. Commun. 2015, 6, 7149. [Google Scholar] [CrossRef]
- Kim, T.H.; Lee, C.S.; Kim, S.; Hur, J.; Lee, S.; Shin, K.W.; Yoon, Y.Z.; Choi, M.K.; Yang, J.; Kim, D.H.; et al. Fully stretchable optoelectronic sensors based on colloidal quantum dots for sensing photoplethysmographic signals. ACS Nano 2017, 11, 5992–6003. [Google Scholar] [CrossRef]
- Chen, H.; Chen, J.; Jiang, J.; Shao, Z.; Kang, G.; Wang, X.; Li, W.; Liu, Y.; Zheng, G. Fast on–off controlling of electrohydrodynamic printing based on ac oscillation induced voltage. Sci. Rep. 2023, 13, 3790. [Google Scholar] [CrossRef]
- Kwon, S.W.; Kim, J.S.; Lee, H.M.; Lee, J.S. Physics-added neural networks: An image-based deep learning for material printing system. Addit. Manuf. 2023, 73, 103668. [Google Scholar] [CrossRef]
- Peng, H.; Grob, L.; Weiss, L.J.K.; Hiendlmeier, L.; Music, E.; Kopic, I.; Teshima, T.F.; Rinklin, P.; Wolfrum, B. Inkjet-printed 3d micro-ring-electrode arrays for amperometric nanoparticle detection. Nanoscale 2023, 15, 4006–4013. [Google Scholar] [CrossRef]
- Gu, Z.; Wang, Y.; Wang, S.; Zhang, T.; Zhao, R.; Hu, X.; Huang, Z.; Su, M.; Xu, Q.; Li, L.; et al. Controllable printing of large-scale compact perovskite films for flexible photodetectors. Nano Res. 2021, 15, 1547–1553. [Google Scholar] [CrossRef]
- Park, H.; Carr, W.W.; Zhu, J.; Morris, J.F. Single drop impaction on a solid surface. AIChE J. 2004, 49, 2461–2471. [Google Scholar] [CrossRef]
- Cui, X.; Boland, T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 2009, 30, 6221–6227. [Google Scholar] [CrossRef]
- Shah, M.A.; Lee, D.G.; Lee, B.Y.; Kim, N.W.; An, H.; Hur, S. Actuating voltage waveform optimization of piezoelectric inkjet printhead for suppression of residual vibrations. Micromachines 2020, 11, eaat1659. [Google Scholar] [CrossRef]
- Zhu, J.; Cai, L.-H. All-aqueous printing of viscoelastic droplets in yield-stress fluids. Acta Biomater. 2023, 165, 60–71. [Google Scholar] [CrossRef]
- Zhao, D.; Zhou, H.; Wang, Y.; Yin, J.; Huang, Y. Drop-on-demand (dod) inkjet dynamics of printing viscoelastic conductive ink. Addit. Manuf. 2021, 48, 102451. [Google Scholar] [CrossRef]
- Yang, Z.; Tian, H.; Wang, C.; Li, X.; Chen, X.; Chen, X.; Shao, J. Actuation waveform optimization via multi-pulse crosstalk modulation for stable ultra-high frequency piezoelectric drop-on-demand printing. Addit. Manuf. 2022, 60, 103165. [Google Scholar] [CrossRef]
- Huang, J.; Segura, L.J.; Wang, T.; Zhao, G.; Sun, H.; Zhou, C. Unsupervised learning for the droplet evolution prediction and process dynamics understanding in inkjet printing. Addit. Manuf. 2020, 35, 101197. [Google Scholar] [CrossRef]
- Tomov, R.I.; Krauz, M.; Jewulski, J.; Hopkins, S.C.; Kluczowski, J.R.; Glowacka, D.M.; Glowacki, B.A. Direct ceramic inkjet printing of yttria-stabilized zirconia electrolyte layers for anode-supported solid oxide fuel cells. J. Power Sources 2010, 195, 7160–7167. [Google Scholar] [CrossRef]
- Rivers, G.; Austin, J.S.; He, Y.; Thompson, A.; Gilani, N.; Roberts, N.; Zhao, P.; Tuck, C.J.; Hague, R.J.M.; Wildman, R.D.; et al. Stable large area drop-on-demand deposition of a conductive polymer ink for 3d-printed electronics, enabled by bio-renewable co-solvents. Addit. Manuf. 2023, 66, 103452. [Google Scholar] [CrossRef]
- Chen, M.; Lee, H.; Yang, J.; Xu, Z.; Huang, N.; Chan, B.P.; Kim, J.T. Parallel, multi-material electrohydrodynamic 3d nanoprinting. Small 2020, 16, e1906402. [Google Scholar] [CrossRef]
- Guo, D.; Xu, Y.; Ruan, J.; Tong, J.; Li, Y.; Zhai, T.; Song, Y. Nonpolar solvent modulated inkjet printing of nanoparticle self-assembly morphologies. Small 2023, 19, e2208161. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, Z.; Ouyang, R.; Zheng, R.; Jiang, Z.; Bai, H.; Xue, H. 3d printed stretchable smart fibers and textiles for self-powered e-skin. Nano Energy 2021, 84, 105866. [Google Scholar] [CrossRef]
- Nelson, A.Z.; Kundukad, B.; Wong, W.K.; Khan, S.A.; Doyle, P.S. Embedded droplet printing in yield-stress fluids. Proc. Natl. Acad. Sci. USA 2020, 117, 5671–5679. [Google Scholar] [CrossRef] [PubMed]
- Aria, A.I.; Gharib, M. Physicochemical characteristics and droplet impact dynamics of superhydrophobic carbon nanotube arrays. Langmuir 2014, 30, 6780–6790. [Google Scholar] [CrossRef] [PubMed]
- Song, K.M.; Kim, M.; Cho, H.; Shin, H.; Kim, G.Y.; Yim, S.; Nam, T.W.; Jung, Y.S. Noninvasive and direct patterning of high-resolution full-color quantum dot arrays by programmed microwetting. ACS Nano 2022, 16, 16598–16607. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Shi, J.; Zhang, X.; Ren, X.; Lu, B.; Deng, W.; Jie, J.; Zhang, X. Patterning liquid crystalline organic semiconductors via inkjet printing for high-performance transistor arrays and circuits. Adv. Funct. Mater. 2021, 31, 2100237. [Google Scholar] [CrossRef]
- Yin, C.; Jiang, X.; Mann, S.; Tian, L.; Drinkwater, B.W. Acoustic trapping: An emerging tool for microfabrication technology. Small 2023, 19, e2207917. [Google Scholar] [CrossRef] [PubMed]
- Lohse, D. Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 2022, 54, 349–382. [Google Scholar] [CrossRef]
- Li, H.; Yang, W.; Duan, Y.; Chen, W.; Zhang, G.; Huang, Y.; Yin, Z. Residual oscillation suppression via waveform optimization for stable electrohydrodynamic drop-on-demand printing. Addit. Manuf. 2022, 55, 102849. [Google Scholar] [CrossRef]
- Kang, G.; Zheng, G.; Chen, Y.; Jiang, J.; Chen, H.; Wang, X.; Li, W.; Huang, Y.; Zheng, J. Jet mode recognition of electrohydrodynamic direct-writing based on micro/nano current. Micromachines 2020, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Xue, W.; Chen, H.; Sun, L.; Jiang, J.; Wang, X.; Guo, S.; Li, W. Measurement and time response of electrohydrodynamic direct-writing current. Micromachines 2019, 10, 90. [Google Scholar] [CrossRef]
- Wang, X.; Lin, J.; Jiang, J.; Guo, S.; Li, W.; Zheng, G. Continuous near-field electrospraying using a glass capillary nozzle. Micromachines 2018, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, X.; Zheng, G.; Xu, L.; Jiang, J.; Luo, Z.; Guo, S.; Sun, D. Current characteristics of stable cone–jet in electrohydrodynamic printing process. Appl. Phys. A 2018, 124, 711. [Google Scholar] [CrossRef]
- Segura, L.J.; Li, Z.; Zhou, C.; Sun, H. Droplet evolution prediction in material jetting via tensor time series analysis. Addit. Manuf. 2023, 66, 103461. [Google Scholar] [CrossRef]
- Mea, H.J.; Delgadillo, L.; Wan, J. On-demand modulation of 3d-printed elastomers using programmable droplet inclusions. Proc. Natl. Acad. Sci. USA 2020, 117, 14790–14797. [Google Scholar] [CrossRef]
- Bucciarelli, A. Precise dot inkjet printing thought multifactorial statistical optimization of the piezoelectric actuator waveform. Flex. Print. Electron. 2020, 5, 045002. [Google Scholar] [CrossRef]
- Guo, C. Retracted: Application of zno semiconductor nanomaterial ink in packaging and printing design. J. Chem. 2023, 2023, 9835180. [Google Scholar]
- Soltman, D.; Subramanian, V. Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 2008, 24, 2224–2231. [Google Scholar] [CrossRef]
- Sun, J.; Sun, Y.; Jia, H.; Bi, H.; Chen, L.; Que, M.; Xiong, Y.; Han, L.; Sun, L. A novel pre-deposition assisted strategy for inkjet printing graphene-based flexible pressure sensor with enhanced performance. Carbon 2022, 196, 85–91. [Google Scholar] [CrossRef]
- Inkley, C.G.; Lawrence, J.E.; Crane, N.B. Impact of controlled prewetting on part formation in binder jet additive manufacturing. Addit. Manuf. 2023, 72, 103619. [Google Scholar] [CrossRef]
- Duan, S.; Wang, T.; Geng, B.; Gao, X.; Li, C.; Zhang, J.; Xi, Y.; Zhang, X.; Ren, X.; Hu, W. Solution-processed centimeter-scale highly aligned organic crystalline arrays for high-performance organic field-effect transistors. Adv. Mater. 2020, 32, e1908388. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hu, G.; Ye, H.; Wei, M.; Guo, Z.; Chen, K.; Liu, C.; Tang, B.; Zhou, G. Mold-free self-assembled scalable microlens arrays with ultrasmooth surface and record-high resolution. Light Sci. Appl. 2023, 12, 143. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Shen, S.; Jin, M.; Zhang, Q.; Liu, M.; Wu, Z.; Chen, J.; Yi, Z.; Zhou, G.; Shui, L. Microwell confined electro-coalescence for rapid formation of high-throughput droplet array. Small 2023, 19, e2302998. [Google Scholar] [CrossRef] [PubMed]
- Kahng, S.-J.; Cerwyn, C.; Dincau, B.M.; Kim, J.-H.; Novosselov, I.V.; Anantram, M.P.; Chung, J.-H. Nanoink bridge-induced capillary pen printing for chemical sensors. Nanotechnology 2018, 29, 335304. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zhang, H.; Yang, Q.; Li, M.; Jiang, L.; Song, Y. Hydrophilic–hydrophobic patterned molecularly imprinted photonic crystal sensors for high-sensitive colorimetric detection of tetracycline. Small 2015, 11, 2738–2742. [Google Scholar] [CrossRef]
- Jiao, L.; Wu, Y.; Hu, Y.; Guo, Q.; Wu, H.; Yu, H.; Deng, L.; Li, D.; Li, L. Mosaic patterned surfaces toward generating hardly-volatile capsular droplet arrays for high-precision droplet-based storage and detection. Small 2023, 19, e2206274. [Google Scholar] [CrossRef]
- Meng, Z.; Li, J.; Chen, Y.; Gao, T.; Yu, K.; Gu, B.; Qu, M.; Li, X.; Lan, H.; Li, D.; et al. Micro/nanoscale electrohydrodynamic printing for functional metallic structures. Mater. Today Nano 2022, 20, 100254. [Google Scholar] [CrossRef]
- Huatan, C.; Junyu, C.; Yiman, C.; Jiaxin, J.; Guoyi, K.; Zungui, S.; Xiang, W.; Wenwang, L.; Yifang, L.; Gaofeng, Z. Microcurrent behavior of core-shell droplet deposition in coaxial electrohydrodynamic printing. Mater. Res. Express 2023, 10, 035006. [Google Scholar] [CrossRef]
- Altintas, Y.; Torun, I.; Yazici, A.F.; Beskazak, E.; Erdem, T.; Serdar Onses, M.; Mutlugun, E. Multiplexed patterning of cesium lead halide perovskite nanocrystals by additive jet printing for efficient white light generation. Chem. Eng. J. 2020, 380, 122493. [Google Scholar] [CrossRef]
- Shi, L.; Meng, L.; Jiang, F.; Ge, Y.; Li, F.; Wu, X.g.; Zhong, H. In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv. Funct. Mater. 2019, 29, 1903648. [Google Scholar] [CrossRef]
- Zhu, M.; Duan, Y.; Liu, N.; Li, H.; Li, J.; Du, P.; Tan, Z.; Niu, G.; Gao, L.; Huang, Y.; et al. Electrohydrodynamically printed high-resolution full-color hybrid perovskites. Adv. Funct. Mater. 2019, 29, 1903294. [Google Scholar] [CrossRef]
- Bao, Z.; Luo, J.-W.; Wang, Y.-S.; Hu, T.-C.; Tsai, S.-Y.; Tsai, Y.-T.; Wang, H.-C.; Chen, F.-H.; Lee, Y.-C.; Tsai, T.-L.; et al. Microfluidic synthesis of CsPbBr3/Cs4PbBr6 nanocrystals for inkjet printing of mini-leds. Chem. Eng. J. 2021, 426, 130849. [Google Scholar] [CrossRef]
- Kim, B.H.; Onses, M.S.; Lim, J.B.; Nam, S.; Oh, N.; Kim, H.; Yu, K.J.; Lee, J.W.; Kim, J.H.; Kang, S.K.; et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 2015, 15, 969–973. [Google Scholar] [CrossRef]
- Wang, X.; Xu, L.; Zheng, G.; Cheng, W.; Sun, D. Pulsed electrohydrodynamic printing of conductive silver patterns on demand. Sci. China Technol. Sci. 2012, 55, 1603–1607. [Google Scholar] [CrossRef]
- Li, H.; Duan, Y.; Shao, Z.; Zhang, W.; Li, H.; Yang, W.; Jin, J.; Yin, Z.; Huang, Y. Morphology-programmable self-aligned microlens array for light extraction via electrohydrodynamic printing. Org. Electron. 2020, 87, 105969. [Google Scholar] [CrossRef]
- Su, S.; Liang, J.; Li, X.; Xin, W.; Chen, L.; Yin, P.; Wang, Z.; Ye, X.; Xiao, J.; Wang, D. Direct microtip focused electrohydrodynamic jet printing of tailored microlens arrays on pdms nanofilm-modified substrate. Adv. Mater. Technol. 2021, 6, 2100449. [Google Scholar] [CrossRef]
- Li, W.; Lin, J.; Wang, X.; Jiang, J.; Guo, S.; Zheng, G. Electrospray deposition of zno thin films and its application to gas sensors. Micromachines 2018, 9, 66. [Google Scholar] [CrossRef]
- Zhang, H.; Palit, P.; Liu, Y.; Vaziri, S.; Sun, Y. Reconfigurable integrated optofluidic droplet laser arrays. ACS Appl. Mater. Interfaces 2020, 12, 26936–26942. [Google Scholar] [CrossRef]
- Zeeshan Yousaf, H.M.; Kim, S.W.; Hassan, G.; Karimov, K.; Choi, K.H.; Sajid, M. Highly sensitive wide range linear integrated temperature compensated humidity sensors fabricated using electrohydrodynamic printing and electrospray deposition. Sens. Actuators B Chem. 2020, 308, 127680. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Chen, W.-R.; Kar, P.; Liao, W.-S.; Chen, C.-H. Creating liquid crystal microdroplet arrays for multiplexed sensing by spatially-controlled molecular patterning. Sens. Actuators B Chem. 2023, 393, 134253. [Google Scholar] [CrossRef]
- Qin, H.; Dong, J.; Lee, Y.-S. Fabrication and electrical characterization of multi-layer capacitive touch sensors on flexible substrates by additive e-jet printing. J. Manuf. Process. 2017, 28, 479–485. [Google Scholar] [CrossRef]
- Peng, L.; Pan, Y.Q.; Wang, Z.; Feng, Y.D.; Liu, Z.H. Design and evaluation of a linear nozzle array with double auxiliary electrodes for restraining cross-talk effect in parallel electrohydrodynamic jet printing. J. Micromech. Microeng. 2022, 32, 105009. [Google Scholar] [CrossRef]
- Cheng, Y.L.; Tseng, T.W. Study on driving waveform design process for multi-nozzle piezoelectric printhead in material-jetting 3d printing. Rapid Prototyp. J. 2021, 27, 1172–1180. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, L.; Cong, L. A micro-vibration-driven direct ink write printing method of gallium-indium alloys. Sci. Rep. 2023, 13, 3914. [Google Scholar] [CrossRef] [PubMed]
- Haake, A.; Tutika, R.; Schloer, G.M.; Bartlett, M.D.; Markvicka, E.J. On-demand programming of liquid metal-composite microstructures through direct ink write 3d printing. Adv. Mater. 2022, 34, 2200182. [Google Scholar] [CrossRef]
- Yuan, C.H.; Wu, T.; Mao, J.; Chen, T.; Li, Y.T.; Li, M.; Xu, Y.T.; Zeng, B.R.; Luo, W.A.; Yu, L.K.; et al. Predictable particle engineering: Programming the energy level, carrier generation, and conductivity of core-shell particles. J. Am. Chem. Soc. 2018, 140, 7629–7636. [Google Scholar] [CrossRef] [PubMed]
- Barua, B.; Durkin, T.J.; Beeley, I.M.; Gadh, A.; Savagatrup, S. Multiplexed and continuous microfluidic sensors using dynamic complex droplets. Soft Matter 2023, 19, 1930–1940. [Google Scholar] [CrossRef]
- Wu, C.; Jia, H.Q.; Almuaalemi, H.Y.M.; Sohan, A.; Yin, B.F. Preparation and analysis of structured color janus droplets based on microfluidic 3d droplet printing. Micromachines 2023, 14, 1911. [Google Scholar] [CrossRef] [PubMed]
Process Methods | Material | Printing Structures | References |
---|---|---|---|
Continuous inkjet printing | Conductive ink | Uniform droplet point | [41] |
Continuous inkjet printing | Polyacrylate ink | 3D microcircular electrode array | [42] |
Continuous inkjet printing | Perovskite materials | High-precision perovskite thin films | [43] |
Continuous inkjet printing | Distilled water, n-Octane, n-Tetradecane, and n-Hexadecane | Uniform droplet point | [44] |
Thermal inkjet printing | Fibrin | Micron-sized fibrin channels | [45] |
Acoustophoretic printing | Newtonian fluids | Microarrays | [46] |
Embedded bio-printing | Biological ink | Highly viscoelastic droplets with good circularity | [47] |
Piezoelectric inkjet printing | PEDOT:PSS/DMSO/water) | Accurate ink drop point | [48] |
Piezoelectric inkjet printing | Conductive ink | Stable droplet array | [49] |
Piezoelectric inkjet printing | Conductive ink | Uniform droplet point | [50] |
Electromagnetic inkjet printing | Yttria-stabilized zirconia | Electrolyte layers | [51] |
Electrohydrodynamic printing | PEDOT:PSS | Stable large-area droplets | [52] |
Electrohydrodynamic printing | Conductive ink | High-resolution uniform droplets | [42] |
Electrohydrodynamic printing | Ag, CdSe/ZnS | Nanogrids and nanowalls of quantum dots and their composite materials | [53] |
Electrohydrodynamic inkjet printing | Conductive ink | Uniform droplet point | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Chen, X.; Mei, Z.; Chen, H.; Chen, J.; Wang, X.; Li, S.; Zhang, R.; Zheng, G.; Li, W. Review of Droplet Printing Technologies for Flexible Electronic Devices: Materials, Control, and Applications. Micromachines 2024, 15, 333. https://doi.org/10.3390/mi15030333
Jiang J, Chen X, Mei Z, Chen H, Chen J, Wang X, Li S, Zhang R, Zheng G, Li W. Review of Droplet Printing Technologies for Flexible Electronic Devices: Materials, Control, and Applications. Micromachines. 2024; 15(3):333. https://doi.org/10.3390/mi15030333
Chicago/Turabian StyleJiang, Jiaxin, Xi Chen, Zexing Mei, Huatan Chen, Junyu Chen, Xiang Wang, Shufan Li, Runyang Zhang, Gaofeng Zheng, and Wenwang Li. 2024. "Review of Droplet Printing Technologies for Flexible Electronic Devices: Materials, Control, and Applications" Micromachines 15, no. 3: 333. https://doi.org/10.3390/mi15030333
APA StyleJiang, J., Chen, X., Mei, Z., Chen, H., Chen, J., Wang, X., Li, S., Zhang, R., Zheng, G., & Li, W. (2024). Review of Droplet Printing Technologies for Flexible Electronic Devices: Materials, Control, and Applications. Micromachines, 15(3), 333. https://doi.org/10.3390/mi15030333