Preparation and Investigation of a Nanosized Piroxicam Containing Orodispersible Lyophilizate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Method
2.2.1. Selection of the Organic Solvent
2.2.2. Optimization of the Process Parameters
2.2.3. Spray-Ultrasound-Assisted Solvent Diffusion-Based Nanoprecipitation
2.2.4. Lyophilization
2.3. Particle Size Analysis
2.3.1. Dynamic Light Scattering (DLS)
2.3.2. Nanoparticle Tracking Analysis (NTA)
2.4. Surface Tension Investigation
2.5. Morphology Investigation
2.6. Analysis of the Structure
2.6.1. Differential Scanning Calorimetry (DSC)
2.6.2. X-ray Powder Diffraction (XRPD)
2.7. Fourier-Transform Infrared Spectroscopy (FT-IR)
2.8. In Vitro Disintegration Test
2.9. In Vitro Drug Release Study
3. Results
3.1. Outcomes of the Particle Size Analysis
3.1.1. Dynamic Light Scattering Results
3.1.2. Nanoparticle Tracking Analysis Results
3.2. Surface Tension Investigation
3.3. Morphology Investigation
3.4. Results of the Crystallinity Investigation
3.4.1. Differential Scanning Calorimetry Result
3.4.2. X-ray Powder Diffraction
3.5. Fourier-Transform Infrared Spectroscopy
3.6. In Vitro Disintegration Test
3.7. In Vitro Drug Release Study
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, R.; Thakur, A.K.; Chaudhari, P.; Banerjee, N. Particle Size Reduction Techniques of Pharmaceutical Compounds for the Enhancement of Their Dissolution Rate and Bioavailability. J. Pharm. Innov. 2022, 17, 333–352. [Google Scholar] [CrossRef]
- Lakio, S.; Smith, D.J.; Andrade, G.; Sandler, N.; Evans, P.; McDermott, J.; Roe, C.; Hӕggström, E. Small is Powerful: Demonstration of the Impact of Nanoformed Piroxicam in a Controlled Clinical Study. Pharm. Res. 2023, 40, 2317–2327. [Google Scholar] [CrossRef]
- Rahmani Del Bakhshayesh, A.; Akbarzadeh, A.; Alihemmati, A.; Tayefi Nasrabadi, H.; Montaseri, A.; Davaran, S.; Abedelahi, A. Preparation and characterization of novel anti-inflammatory biological agents based on piroxicam-loaded poly-ε-caprolactone nano-particles for sustained NSAID delivery. Drug Deliv. 2020, 27, 269–282. [Google Scholar] [CrossRef]
- Alhamhoom, Y.; Honmane, S.M.; Hani, U.; Osmani, R.A.M.; Kandasamy, G.; Vasudevan, R.; Paramshetti, S.; Dudhal, R.R.; Kengar, N.K.; Charde, M.S. Study of Formulation and Process Variables for Optimization of Piroxicam Nanosuspension Using 32 Factorial Design to Improve Solubility and In Vitro Bioavailability. Polymers 2023, 15, 483. [Google Scholar] [CrossRef]
- Lai, F.; Pini, E.; Angioni, G.; Manca, M.L.; Perricci, J.; Sinico, C.; Fadda, A.M. Nanocrystals as tool to improve piroxicam dissolution rate in novel orally disintegrating tablets. Eur. J. Pharm. Biopharm. 2011, 79, 552–558. [Google Scholar] [CrossRef]
- Aksoy, O.A.; Zanbak Çotaoğlu, M.; Fatsa, T.; Topal, G.R.; Eşim, Ö.; Göksel, B.A.; Hoşbul, T.; Özkan, C.K.; Savaşer, A.; Özkan, Y. Preparation of Piroxicam nanosuspensions by high pressure homogenization and evaluation of improved bioavailability. Drug Dev. Ind. Pharm. 2023, 49, 715–722. [Google Scholar] [CrossRef]
- Alshweiat, A.; Katona, G.; Csóka, I.; Ambrus, R. Design and characterization of loratadine nanosuspension prepared by ultrasonic-assisted precipitation. Eur. J. Pharm. Sci. 2018, 122, 94–104. [Google Scholar] [CrossRef]
- Ambrus, R.; Kocbek, P.; Kristl, J.; Šibanc, R.; Rajkó, R.; Szabó-Révész, P. Investigation of preparation parameters to improve the dissolution of poorly water-soluble meloxicam. Int. J. Pharm. 2009, 381, 153–159. [Google Scholar] [CrossRef]
- Kocbek, P.; Baumgartner, S.; Kristl, J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int. J. Pharm. 2006, 312, 179–186. [Google Scholar] [CrossRef]
- Party, P.; Klement, M.L.; Révész, P.S.; Ambrus, R. Preparation and Characterization of Ibuprofen Containing Nano-Embedded-Microparticles for Pulmonary Delivery. Pharmaceutics 2023, 15, 545. [Google Scholar] [CrossRef]
- Slavkova, M.; Breitkreutz, J. Orodispersible drug formulations for children and elderly. Eur. J. Pharm. Sci. 2015, 75, 2–9. [Google Scholar] [CrossRef]
- Vanbillemont, B.; Everaert, H.; De Beer, T. New advances in the characterization of lyophilised orally disintegrating tablets. Int. J. Pharm. 2020, 579, 119153. [Google Scholar] [CrossRef]
- Bjelošević Žiberna, M.; Planinšek, O.; Ahlin Grabnar, P. Oral lyophilizates obtained using aggressive drying conditions: Effect of excipients. J. Drug Deliv. Sci. Technol. 2023, 82, 104379. [Google Scholar] [CrossRef]
- Cilurzo, F.; Musazzi, U.M.; Franzé, S.; Selmin, F.; Minghetti, P. Orodispersible dosage forms: Biopharmaceutical improvements and regulatory requirements. Drug Discov. Today 2018, 23, 251–259. [Google Scholar] [CrossRef]
- Casian, T.; Iurian, S.; Bogdan, C.; Rus, L.; Moldovan, M.; Tomuta, I. QbD for pediatric oral lyophilisates development: Risk assessment followed by screening and optimization. Drug Dev. Ind. Pharm. 2017, 43, 1932–1944. [Google Scholar] [CrossRef]
- Iurian, S.; Bogdan, C.; Tomuță, I.; Szabó-Révész, P.; Chvatal, A.; Leucuța, S.E.; Moldovan, M.; Ambrus, R. Development of oral lyophilisates containing meloxicam nanocrystals using QbD approach. Eur. J. Pharm. Sci. 2017, 104, 356–365. [Google Scholar] [CrossRef]
- Timergalieva, V.R.; Gennari, C.G.M.; Cilurzo, F.; Selmin, F.; Moustafine, R.I. Comparative Evaluation of Metformin and Metronidazole Release from Oral Lyophilisates with Different Methods. Sci. Pharm. 2023, 91, 23. [Google Scholar] [CrossRef]
- Cornilă, A.; Iurian, S.; Tomuță, I.; Porfire, A. Orally Dispersible Dosage Forms for Paediatric Use: Current Knowledge and Development of Nanostructure-Based Formulations. Pharmaceutics 2022, 14, 1621. [Google Scholar] [CrossRef]
- Tablets. In European Pharmacopoeia 11.0; Council of Europe: Strasbourg, France, 2024; pp. 1004–1006.
- Tang, X.; Pikal, M.J. Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm. Res. 2004, 21, 191–200. [Google Scholar] [CrossRef]
- Berardi, A.; Bauhuber, S.; Sawafta, O.; Warnke, G. Alginates as tablet disintegrants: Understanding disintegration mechanisms and defining ranges of applications. Int. J. Pharm. 2021, 601, 120512. [Google Scholar] [CrossRef]
- Piroxicam. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Piroxicam#section=Solubility (accessed on 12 February 2024).
- Vanaja, K.; Rani, R.H.S. Design of experiments: Concept and applications of plackett burman design. Clin. Res. Regul. Aff. 2007, 24, 1–23. [Google Scholar] [CrossRef]
- 2.9.3. Dissolution test for solid dosage forms. In European Pharmacopoeia 11.0; Council of Europe: Strasbourg, France, 2024; pp. 348–355.
- Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 2011, 18, 15–28. [Google Scholar] [CrossRef]
- Hou, J.; Ci, H.; Wang, P.; Wang, C.; Lv, B.; Miao, L.; You, G. Nanoparticle tracking analysis versus dynamic light scattering: Case study on the effect of Ca2+ and alginate on the aggregation of cerium oxide nanoparticles. J. Hazard. Mater. 2018, 360, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Salopek, B.; Krasic, D.; Filipovic, S. Measurement and application of zeta-potential. Rud.-Geol.-Naft. Zb. 1992, 4, 147–151. [Google Scholar]
- Maguire, C.M.; Sillence, K.; Roesslein, M.; Hannell, C.; Suarez, G.; Sauvain, J.J.; Capracotta, S.; Contal, S.; Cambier, S.; El Yamani, N.; et al. Benchmark of nanoparticle tracking analysis on measuring nanoparticle sizing and concentration. J. Micro Nano-Manuf. 2017, 5, 041002. [Google Scholar] [CrossRef]
- Saveyn, H.; De Baets, B.; Thas, O.; Hole, P.; Smith, J.; Van der Meeren, P. Accurate particle size distribution determination by nanoparticle tracking analysis based on 2-D Brownian dynamics simulation. J. Colloid Interface Sci. 2010, 352, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Vargaftik, N.B.; Volkov, B.N.; Voljak, L.D. International Tables of the Surface Tension of Water. J. Phys. Chem. Ref. Data 1983, 12, 817–820. [Google Scholar] [CrossRef]
- Jasper, J.J. The Surface Tension of Pure Liquid Compounds. J. Phys. Chem. Ref. Data 1972, 1, 841–1010. [Google Scholar] [CrossRef]
- Van Eerdenbrugh, B.; Vermant, J.; Martens, J.A.; Froyen, L.; Van Humbeeck, J.; Augustijns, P.; van der Mooter, G. A Screening Study of Surface Stabilization during the Production of Drug Nanocrystals. J. Pharm. Sci. 2008, 98, 2091–2103. [Google Scholar] [CrossRef]
- Burger, A.; Henck, J.O.; Hetz, S.; Rollinger, J.M.; Weissnicht, A.A.; Stöttner, H. Energy/temperature diagram and compression behavior of the polymorphs of D-mannitol. J. Pharm. Sci. 2000, 89, 457–468. [Google Scholar] [CrossRef]
- Paaver, U.; Lust, A.; Mirza, S.; Rantanen, J.; Veski, P.; Heinämäki, J.; Kogermann, K. Insight into the solubility and dissolution behavior of piroxicam anhydrate and monohydrate forms. Int. J. Pharm. 2012, 431, 111–119. [Google Scholar] [CrossRef] [PubMed]
- 2.9.1. Disintegration of tablets and capsules. In European Pharmacopoeia 11.0; Council of Europe: Strasbourg, France, 2024; pp. 345–347.
- 5.17.1. Recommendations on dissolution testing. In European Pharmacopoeia 11.0; Council of Europe: Strasbourg, France, 2024; pp. 837–839.
Sample | PRX (mg) | POL (mg) | MAN (mg) | NaAlg (mg) |
---|---|---|---|---|
PRX_POL_NS | 50 | 180 | - | - |
PRX_POL_MAN_NaAlg_LIO | 0.5 | 2 | 50 | 12.5 |
Sample | Z Average (nm) | PI | ζ Potential (mV) |
---|---|---|---|
PRX_POL_NS | 185.03 ± 0.76 | 0.33 ± 0.05 | −12.37 ± 0.46 |
Sample | d (nm) | D10 (nm) | D50 (nm) | D90 (nm) |
---|---|---|---|---|
PRX_POL_NS | 119.4 ± 0.8 | 90.6 ± 1.2 | 110.6 ± 0.6 | 159.9 ± 6.1 |
Sample | d (nm) |
---|---|
PRX_POL_NS | 373.73 ± 86.48 |
PRX_POL_MAN_NaAlg_LIO | 348.17 ± 73.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Party, P.; Sümegi, S.S.; Ambrus, R. Preparation and Investigation of a Nanosized Piroxicam Containing Orodispersible Lyophilizate. Micromachines 2024, 15, 532. https://doi.org/10.3390/mi15040532
Party P, Sümegi SS, Ambrus R. Preparation and Investigation of a Nanosized Piroxicam Containing Orodispersible Lyophilizate. Micromachines. 2024; 15(4):532. https://doi.org/10.3390/mi15040532
Chicago/Turabian StyleParty, Petra, Sándor Soma Sümegi, and Rita Ambrus. 2024. "Preparation and Investigation of a Nanosized Piroxicam Containing Orodispersible Lyophilizate" Micromachines 15, no. 4: 532. https://doi.org/10.3390/mi15040532
APA StyleParty, P., Sümegi, S. S., & Ambrus, R. (2024). Preparation and Investigation of a Nanosized Piroxicam Containing Orodispersible Lyophilizate. Micromachines, 15(4), 532. https://doi.org/10.3390/mi15040532