Shape-Memory Polymers Based on Carbon Nanotube Composites
Abstract
:1. Introduction
2. Processing SMP with Carbon Nanotubes
2.1. Properties of Carbon Nanotubes
2.2. Thermoset Composites with Carbon Nanotubes
2.3. Thermoplastic Composites with Carbon Nanotubes
3. Thermal Actuation of SMP with CNT
3.1. Direct Heating
3.2. Indirect Heating
3.2.1. Electrically Driven
CNT Type | Content | Polymer | Processing | Resistivity (Ω·cm) | Applied Tension (V) | Recovery Time (s) | Ttrans (°C) | Year | Reference |
---|---|---|---|---|---|---|---|---|---|
MWCNT | 0.3 wt.% | AR | Three-roll mill + 3D printing (DLP) | 3.70 × 103 | 180 | 20 | 36 | 2017 | [164] |
MWCNT | 0.2 wt.% | ER | Three-roll mill + curing | 1.00 × 104 | 126–265 | NA | 75–176 | 2022 | [90] |
30 wt.% | Impregnation + curing | 4.71 × 103 | 12 | 22 | 30–40 | 2021 | [165] | ||
40 wt.% | 3.16 × 10−1 | 4.6 | 20 | 54 | 2020 | [162] | |||
CNT | 1.08 wt.% | 7.52 × 10−1 | 17 | 8 | 100 | 2016 | [166] | ||
1.08 wt.% | 7.52 × 10−1 | 8 and 2 | 60 | 100 | |||||
0.2 wt.% | 7.75 × 10−1 | 10 | 10 | ∼106 | 2016 | [167] | |||
hCNT | 0.08 g (CNT) | 9.30 × 10−2 | 12 | 45 | 110 | 2013 | [168] | ||
0.6 g (CF) | |||||||||
0.2 g (CNT) | 8.60 × 10−2 | 10 | 40 | 110 | 2013 | [161] | |||
0.6 g (CF) | |||||||||
hMWCNT | 0.4 wt.% (MWCNT) | hydro ER | Stirring + curing | 1.00 × 103 | 225 | 2100 | ∼71 | 2012 | [169] |
1.5 wt.% (CB) | |||||||||
SWCNT | 4 wt.% | PU | Solvent casting | 4.00 | 30 | 90 | ∼50 | 2011 | [170] |
CNT Type | Content | Polymer | Processing | Resistivity (Ω·cm) | Applied Tension (V) | Recovery Time (s) | Ttrans (°C) | Year | Reference |
---|---|---|---|---|---|---|---|---|---|
MWCNT | - | EVA | Spray coating | 1.05 | 15 | - | 70 | 2021 | [160] |
10 wt.% | Ball milling + compression molding | 6.01 × 10−1 | - | - | - | 2022 | [173] | ||
10 wt.% | Melt mixing | 21.3 | 30 | - | 70 | ||||
fMWCNT | 2 wt.% | Ultrasound adsorption | 46.0 | 50 | 30 to deformation | 77 | 2023 | [174] | |
3.77 wt.% | 1.64 × 10−2 | 60 | 19 to deformation | 74 | 2022 | [175] | |||
CNT | 5 wt.% | EVA/PCL (60:40) | Melt mixing + compression molding | 20.5 | 20 | 24 | 94 | 2016 | [69] |
30 | 12 | 94 | |||||||
CNT | 10 wt.% | PAEK | Solvent casting | 1.70 | 25 | 27 | 131 | 2020 | [103] |
15 wt.% | 9.84 × 10−1 | 20 | 60 | ||||||
MWCNT | 8 wt.% | 18.0 | ∼115 | - | 2022 | [176] | |||
hMWCNT | MWCNT (2 wt.%) and CB (6 wt.%) | 11.0 | 60 | ∼100 | |||||
MWCNT (4 wt.%) and CB (4 wt.%) | 16.0 | ∼130 | |||||||
MWCNT (6 wt.%) and CB (2 wt.%) | 19.0 | ∼115 | |||||||
MWCNT | 1 wt.% | PBS/PCL | Solvent casting | 1.60 × 103 | 75 | 45 | 67 | 2017 | [177] |
MWCNT | 0.5 wt.% | PBS/PEG | In situ polymerization | 2.26 × 102 | 80 | 313 | 38.3 | 2013 | [178] |
1 wt.% | 14.2 | 60 | 57 | 41.5 | |||||
SWCNT | 3 wt.% | PCL-Py | Solvent casting | 2.11 | 50 | 20 | 65 | 2019 | [111] |
MWCNT | 5 vol.% | PCL/EOC | Melt mixing + compression molding | 16.7 | 30 | 30 | 57 | 2019 | [179] |
MWCNT | 15 vol.% | PE/PCO (30:70) | Melt mixing | 1.00 | 150 | 120 | - | 2014 | [180] |
MWCNT | 40 wt.% | PEG | Solvent casting | 1.75 | 27 | 15 | ∼50 | 2022 | [181] |
fMWCNT | 3 wt.% | PLA | Solvent casting | 1.87 × 107 | 40 | 75 | ∼54 | 2018 | [49] |
fCNT | 5 wt.% | Melt mixing + compression molding | 1.00× 104 | 40 | 25 | 56 | 2014 | [46] | |
MWCNT | 5 phr | 1.00 × 104 | 60 | 12 | - | 2018 | [48] | ||
8 wt.% | Melt mixing | 22.0 | 20 | 90 | 66 | 2022 | [172] | ||
18.5 | 10 | 30 | |||||||
3D printing | - | 35–50 | 70–90 | 66 | |||||
hCNT | 1 wt.% | PLA/ESO | Solvent casting | 1.10 × 104 | 40 | 75 | - | 2015 | [47] |
2 wt.% | 1.90 × 102 | 35 | |||||||
3 wt.% | 3.50 × 103 | 63 | |||||||
hCNT | CNT (4 wt.%) and rGO (2 wt.%) | PLA/PCL | Solvent casting | 1.67 × 10−3 | 80 | 60 | 74 | 2019 | [72] |
MWCNT | 3 wt.% | PLA/PCL (50:50) | 1.00 × 102 | 100 | 5 | ∼60 | 2012 | [71] | |
MWCNT | 14 wt.% | PLA/PEU (70:30) | Melt mixing + 3D printing | 3.40 | 13 | 150 | 47 | 2023 | [182] |
17 | 25 | 61 | |||||||
MWCNT | 10 wt.% | PLA/TPU (10:90) | Melt mixing + compression molding | 1.00 × 102 | 40 | 40 | ∼55 | 2013 | [73] |
fMWCNT | 15 | ||||||||
SWCNT | 2 wt.% | PLA/TPU (60:40) | 1.00 × 104 | - | 80 | 40.5 | 2019 | [50] | |
hMWCNT | MWCNT (1 phr) and CB (3 phr) | PLA/TPU (70:30) | 45.5 | 30 | 100 | ∼70 | 2018 | [76] | |
MWCNT (1 phr) and CB (5 phr) | 21.0 | 70 | |||||||
MWCNT | 4 wt.% | PLA/TPU (40:60) | 8.00 | 20 | 80 | ∼70 | 2017 | [74] | |
PLA/TPU (50:50) | 5.00 | 50 | |||||||
MWCNT | 3 phr | PLA/PPC (30:70) | Melt mixing + compression mounding | 1.00 × 10−1 | 20 | 90 | ∼50 | 2016 | [183] |
30 | 30 | ||||||||
MWCNT | 2 vol.% | POE | Ball milling + compression molding | 21.7 | 36 | 18 | ∼60 | 2019 | [184] |
MWCNT | 0.25 wt.% | PVA | Stirring + freezing–thawing | 2.33 × 102 | 100 | - | 53 | 2021 | [115] |
MWCNT | 0.25 wt.% | PVA/ chitosan (75:25) | Stirring + freezing–thawing | 1.01 × 102 | 100 | - | 53 | 2021 | [115] |
MWCNT | 3 wt.% | SBS/LDPE | Melt mixing + compression molding | 1.00 × 104 | 60 | 118 | ∼110 | 2017 | [119] |
4.5 wt.% | 10.01 | 40 | 162 | ||||||
6 wt.% | 1.13 | 20 | 145 | ||||||
7.5 wt.% | 1.00 | 130 | |||||||
MWCNT | 10 phr | SIS/PEO (50:50) | Melt mixing + compression mounding | 12.0 | 5.5 | 300 | 75 | 2023 | [120] |
5 phr | 3.77 × 102 | 25 | 210 | ||||||
SWCNT | 2.5 wt.% | TPI | Solvent casting + compression molding | 11.9 | 30 | 250 | ∼40 | 2023 | [121] |
CNT | 0.5 to 5 wt.% | TPU | Melt mixing + compression molding | 1.00 × 10−3 | 50 | 60 | - | 2015 | [127] |
MWCNT | 2.5 wt.% | TPU/PCL | Melt mixing + multilayer coextrusion | 10.0 | 30 | 60 | 56 | 2020 | [63] |
1.00 × 102 | 60 | 20 | |||||||
CNT | 4 wt.% | Solvent casting | 5.00 × 10−2 | 100 | 120 | 62 | 2019 | [185] | |
fMWCNT | 10 wt.% | TPU/PVDF (90:10) | Melt mixing + compression molding | 5.00 × 103 | 40 | 30 | - | 2014 | [85] |
4.00 × 102 | 15 |
3.2.2. Light-Driven
4. Other Types of Actuation of SMP with CNT
5. Multifunctionality in SMP-CNT Composites
5.1. Self-Healing
5.2. Sensing
6. Conclusions
Funding
Conflicts of Interest
Abbreviations
ABS | Acrylonitrile butadiene styrene |
AFM | Atomic Force Microscopy |
AR | acrylic resin |
BR | benzoxazine resin |
CAD | computer-aided design |
CB | carbon black |
CE | cyanate ester |
CF | carbon fibers |
CNSL | Cashew nut shell liquid |
CNT | carbon nanotubes |
CTE | coefficient of thermal expansion |
CW | carnauba wax |
DA | dopamine |
DLP | digital light process |
EM | electromagnetic |
EOC | Ethylene--octene copolymer |
EPAc | Epoxy Acrylate |
ER | epoxy resin |
ESO | Epoxidized soybean oil |
et-SMP | electrothermal shape-memory polymer |
EUG | Eucommia ulmoides gum |
EVA | poly(ethylene-co-vinyl acetate) |
fCNT | functionalized carbon nanotubes |
FDM | fused deposition modeling |
fMWCNT | functionalized multi-walled carbon nanotubes |
fu | furan-grafted |
Gr | graphene |
HBPU | Hyperbranched Polyurethane |
hCNT | hybrid carbon nanotubes |
hMWCNT | hybrid multi-walled carbon nanotubes |
hSWCNT | hybrid single-walled carbon nanotubes |
IR | infra-red |
LCE | liquid crystal elastomer |
LDPE | low-density polyethylene |
mPE-g-AA | Acrylic acid-functionalized metallocene polyethylene |
MW | Microwave |
MWCNT | multi-walled carbon nanotubes |
NIR | near infra-red |
NR | natural rubber |
P(AM-co-OA) | poly(acrylamide-octadecyl acrylate) |
PAEK | polyaryletherketone |
PANI | polyaniline |
PBS | Poly(butylene succinate) |
PCL | poly(-caprolactone) |
PCL-Py | pyrene-containing poly(-caprolactone) |
PCO | Polycyclooctene |
PE | Polyethylene |
PEG | Polyethylene glycol |
PEGDMA | Polyethylene glycol dimethacrylate |
PEO | polyolefin elastomer |
PEU | Polyester urethane |
PK | polyketone |
PLA | poly(lactic) acid |
PNIPAAm | Poly(N-isopropylacrylamide) |
POE | poly(ethylene-co-octene) |
POP | palm oil polyol |
PPC | poly(propylene) carbonate |
PS | polystyrene |
pt-SMP | photothermal shape-memory polymer |
PU | thermoset polyurethane |
PVA | polyvinyl alcohol |
PVC | Polyvinyl Chloride |
PVDF | polyvinylidene fluoride |
PW | paraffin wax |
shape fixity ratio | |
shape recovery ratio | |
rDA | retro Diels–Alder |
RF | radio frequency |
rGO | reduced graphene oxide |
RPSM | Reversible plasticity shape-memory |
SBS | poly(styrene--butadiene--styrene) |
SIS | poly(styrene--isoprene--styrene) |
SLA | Stereolithography |
SME | shape-memory effect |
SMP | shape-memory polymers |
SWCNT | single-walled carbon nanotubes |
glass transition temperature | |
melting temperature | |
transition temperature | |
t-SMP | thermally responsive shape-memory polymer |
TC | thermal conductivity |
TPI | Trans-1,4-polyisoprene |
TPU | thermoplastic polyurethane |
UHMWPE | Ultra-High-Molecular-Weight Polyethylene |
UV | ultra-violet |
Vis | Visible |
References
- Leng, J.S.; Lan, X.; Liu, Y.J.; Du, S.Y. Shape-memory polymers and their composites: Stimulus methods and applications. Prog. Mater. Sci. 2011, 56, 1077–1135. [Google Scholar] [CrossRef]
- Liu, Y.; Genzer, J.; Dickey, M.D. “2D or not 2D”: Shape-programming polymer sheets. Prog. Polym. Sci. 2016, 52, 79–106. [Google Scholar] [CrossRef]
- Li, Z.P.; Olah, A.; Baer, E. Micro- and nano-layered processing of new polymeric systems. Prog. Polym. Sci. 2020, 102, 101210. [Google Scholar] [CrossRef]
- Behl, M.; Zotzmann, J.; Lendlein, A. Shape-memory polymers and shape-changing polymers. In Shape-Memory Polymers; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–40. [Google Scholar]
- Melly, S.K.; Liu, L.W.; Liu, Y.J.; Leng, J.S. Active composites based on shape-memory polymers: Overview, fabrication methods, applications, and future prospects. J. Mater. Sci. 2020, 55, 10975–11051. [Google Scholar] [CrossRef]
- Czanikova, K.; Krupa, I.; Ilcikova, M.; Kasak, P.; Chorvat, D.; Valentin, M.; Slouf, M.; Mosnacek, J.; Micusik, M.; Omastova, M. Photo-actuating materials based on elastomers and modified carbon nanotubes. J. Nanophotonics 2012, 6, 063522. [Google Scholar] [CrossRef]
- Qi, X.; Pan, C.L.; Zhang, L.Q.; Yue, D.M. Bio-Based, Self-Healing, Recyclable, Reconfigurable Multifunctional Polymers with Both One-Way and Two-Way shape-memory Properties. ACS Appl. Mater. Interfaces 2023, 15, 3497–3506. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, Z. Function-driven design of stimuli-responsive polymer composites: Recent progress and challenges. J. Mater. Chem. C 2018, 6, 11817–11834. [Google Scholar] [CrossRef]
- Hanzon, D.W.; Yu, K.; Yakacki, C.M. Activation Mechanisms of Shape-Memory Polymers. In Shape-Memory Polymer Device Design; David, L., Safranski, J.C.G., Eds.; William Andrew Publishing: Norwich, NY, USA, 2017; pp. 139–187. [Google Scholar] [CrossRef]
- Hafeez, M.A.; Usman, M.; Umer, M.A.; Hanif, A. Recent Progress in Isotropic Magnetorheological Elastomers and Their Properties: A Review. Polymers 2020, 12, 3023. [Google Scholar] [CrossRef]
- Madbouly, S.A.; Lendlein, A. Shape-Memory Polymer Composites. Shape-Mem. Polym. 2010, 226, 41–95. [Google Scholar] [CrossRef]
- Wang, W.X.; Liu, Y.J.; Leng, J.S. Recent developments in shape-memory polymer nanocomposites: Actuation methods and mechanisms. Coord. Chem. Rev. 2016, 320, 38–52. [Google Scholar] [CrossRef]
- Sanchez, C.P.; Jerome, C.J.; Noels, L.; Vanderbemden, P. Review of Thermoresponsive Electroactive and Magnetoactive Shape Memory Polymer Nanocomposites. ACS Omega 2022, 7, 40701–40723. [Google Scholar] [CrossRef]
- Yarali, E.; Baniasadi, M.; Zolfagharian, A.; Chavoshi, M.; Arefi, F.; Hossain, M.; Bastola, A.; Ansari, M.; Foyouzat, A.; Dabbagh, A.; et al. Magneto-/electro-responsive polymers toward manufacturing, characterization, and biomedical/soft robotic applications. Appl. Mater. Today 2022, 26, 101306. [Google Scholar] [CrossRef]
- Bhatti, M.R.A.; Kernin, A.; Tausif, M.; Zhang, H.; Papageorgiou, D.; Bilotti, E.; Peijs, T.; Bastiaansen, C.W.M. Light-Driven Actuation in Synthetic Polymers: A Review from Fundamental Concepts to Applications. Adv. Opt. Mater. 2022, 10, 2102186. [Google Scholar] [CrossRef]
- Ge, Q.; Qi, H.J.; Dunn, M.L. Active materials by four-dimension printing. Appl. Phys. Lett. 2013, 103, 131901. [Google Scholar] [CrossRef]
- Momeni, F.; Hassani, N.; Liu, X.; Ni, J. A review of 4D printing. Mater. Des. 2017, 122, 42–79. [Google Scholar] [CrossRef]
- Kularatne, R.S.; Kim, H.; Boothby, J.M.; Ware, T.H. Liquid Crystal Elastomer Actuators: Synthesis, Alignment, and Applications. J. Polym. Sci. Part B-Polym. Phys. 2017, 55, 395–411. [Google Scholar] [CrossRef]
- Wan, Z.Q.; Zhang, P.; Liu, Y.S.; Lv, L.W.; Zhou, Y.S. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomater. 2020, 101, 26–42. [Google Scholar] [CrossRef]
- Huang, X.Y.; Panahi-Sarmad, M.; Dong, K.; Li, R.Q.; Chen, T.J.; Xiao, X.L. Tracing evolutions in electro-activated shape-memory polymer composites with 4D printing strategies: A systematic review. Compos. Part A-Appl. Sci. Manuf. 2021, 147, 106444. [Google Scholar] [CrossRef]
- Patadiya, J.; Naebe, M.; Wang, X.A.; Joshi, G.; Kandasubramanian, B. Emerging 4D printing strategies for on-demand local actuation & micro printing of soft materials. Eur. Polym. J. 2023, 184, 111778. [Google Scholar] [CrossRef]
- Monthioux, M.; Serp, P.; Flahaut, E.; Razafinimanana, M.; Laurent, C.; Peigney, A.; Bacsa, W.; Broto, J.M. Introduction to carbon nanotubes. In Springer Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2007; pp. 43–112. [Google Scholar]
- Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. [Google Scholar] [CrossRef]
- Huxtable, S.T.; Cahill, D.G.; Shenogin, S.; Xue, L.P.; Ozisik, R.; Barone, P.; Usrey, M.; Strano, M.S.; Siddons, G.; Shim, M.; et al. Interfacial heat flow in carbon nanotube suspensions. Nat. Mater. 2003, 2, 731–734. [Google Scholar] [CrossRef]
- Hone, J.; Llaguno, M.; Nemes, N.; Johnson, A.; Fischer, J.; Walters, D.; Casavant, M.; Schmidt, J.; Smalley, R. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl. Phys. Lett. 2000, 77, 666–668. [Google Scholar] [CrossRef]
- Berber, S.; Kwon, Y.K.; Tomanek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Winey, K.I. Polymer nanocomposites containing carbon nanotubes. Macromolecules 2006, 39, 5194–5205. [Google Scholar] [CrossRef]
- Ma, P.C.; Siddiqui, N.A.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A-Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Lendlein, A.; Kelch, S. Shape-memory polymers. Angew. Chem.-Int. Ed. 2002, 41, 2034–2057. [Google Scholar] [CrossRef]
- Liu, Y.P.; Gall, K.; Dunn, M.L.; Greenberg, A.R.; Diani, J. Thermomechanics of shape-memory polymers: Uniaxial experiments and constitutive modeling. Int. J. Plast. 2006, 22, 279–313. [Google Scholar] [CrossRef]
- Wang, Y.; Weng, G.J. Electrical Conductivity of Carbon Nanotube- and Graphene-Based Nanocomposites. In Micromechanics and Nanomechanics of Composite Solids; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Askari, D.; Veedu, V.P.; Ghasemi-Nejhad, M.N. Chirality dependence of carbon single-walled nanotube material properties: Axial coefficient of thermal expansion. J. Nanosci. Nanotechnol. 2006, 6, 2167–2174. [Google Scholar] [CrossRef]
- Wong, E.W.; Sheehan, P.E.; Lieber, C.M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 1997, 277, 1971–1975. [Google Scholar] [CrossRef]
- Mizuno, K.; Ishii, J.; Kishida, H.; Hayamizu, Y.; Yasuda, S.; Futaba, D.N.; Yumura, M.; Hata, K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 2009, 106, 6044–6047. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Lezec, H.J.; Hiura, H.; Bennett, J.W.; Ghaemi, H.F.; Thio, T. Electrical conductivity of individual carbon nanotubes. Nature 1996, 382, 54–56. [Google Scholar] [CrossRef]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009, 69, 1486–1498. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Coleman, J.N.; Khan, U.; Blau, W.J.; Gun’ko, Y.K. Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 2006, 44, 1624–1652. [Google Scholar] [CrossRef]
- Breuer, O.; Sundararaj, U. Big returns from small fibers: A review of polymer/carbon nanotube composites. Polym. Compos. 2004, 25, 630–645. [Google Scholar] [CrossRef]
- Banerjee, J.; Dutta, K. Melt-mixed carbon nanotubes/polymer nanocomposites. Polym. Compos. 2019, 40, 4473–4488. [Google Scholar] [CrossRef]
- Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136. [Google Scholar] [CrossRef]
- Rahmat, M.; Hubert, P. Carbon nanotube-polymer interactions in nanocomposites: A review. Compos. Sci. Technol. 2011, 72, 72–84. [Google Scholar] [CrossRef]
- Punetha, V.D.; Rana, S.; Yoo, H.J.; Chaurasia, A.; McLeskey, J.T.; Ramasamy, M.S.; Sahoo, N.G.; Cho, J.W. Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene. Prog. Polym. Sci. 2017, 67, 1–47. [Google Scholar] [CrossRef]
- Covas, J.A.; Paiva, M.C. Monitoring dispersion and re-agglomeration phenomena during the manufacture of polymer nanocomposites. In Processing of Polymer Nanocomposites; Carl Hanser Verlag GmbH & Co.: Munich, Germany, 2019. [Google Scholar] [CrossRef]
- Alam, J.; Alam, M.; Raja, M.; Abduljaleel, Z.; Dass, L.A. MWCNT-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive shape-memory Behaviour. Int. J. Mol. Sci. 2014, 15, 19924–19937. [Google Scholar] [CrossRef]
- Alam, J.; Alam, M.; Dass, L.A.; Shanmugharaj, A.M.; Raja, M. Development of Plasticized PLA/NH2-CNT Nanocomposite: Potential of NH2-CNT to Improve Electroactive shape-memory Properties. Polym. Compos. 2014, 35, 2129–2136. [Google Scholar] [CrossRef]
- Alam, J.; Khan, A.; Alam, M.; Mohan, R. Electroactive shape-memory Property of a Cu-decorated CNT Dispersed PLA/ESO Nanocomposite. Materials 2015, 8, 6391–6400. [Google Scholar] [CrossRef]
- Mohan, R.; Subha, J.; Alam, J. Influence of Multiwalled Carbon Nanotubes on Biodegradable Poly(lactic acid) Nanocomposites for Electroactive shape-memory Actuator. Adv. Polym. Technol. 2018, 37, 21664. [Google Scholar] [CrossRef]
- Raghunath, S.; Kumar, S.; Samal, S.K.; Mohanty, S.; Nayak, S.K. PLA/ESO/MWCNT nanocomposite: A study on mechanical, thermal and electroactive shape-memory properties. J. Polym. Res. 2018, 25, 126. [Google Scholar] [CrossRef]
- Sun, Y.C.; Chu, M.; Huang, M.; Hegazi, O.; Naguib, H.E. Hybrid Electroactive shape-memory Polymer Composites with Room Temperature Deformability. Macromol. Mater. Eng. 2019, 304, 1900196. [Google Scholar] [CrossRef]
- Shahdan, D.; Ahmad, S.H. Effect of Filler Loading of Nickel Zinc Ferrite on the Tensile Properties of PLA Nanocomposites. AIP Conf. Proc. 2013, 1528, 266–271. [Google Scholar] [CrossRef]
- Silva, M.M.; Lopes, P.E.; Li, Y.; Pötschke, P.; Ferreira, F.N.; Paiva, M.C. Polylactic Acid/Carbon Nanoparticle Composite Filaments for Sensing. Appl. Sci. 2021, 11, 2580. [Google Scholar] [CrossRef]
- Xie, F.; Huang, L.N.; Leng, J.S.; Liu, Y.J. Thermoset shape-memory polymers and their composites. J. Intell. Mater. Syst. Struct. 2016, 27, 2433–2455. [Google Scholar] [CrossRef]
- Ehrmann, G.; Ehrmann, A. 3D printing of shape-memory polymers. J. Appl. Polym. Sci. 2021, 138, 50847. [Google Scholar] [CrossRef]
- Gonzalez, G.; Chiappone, A.; Roppolo, I.; Fantino, E.; Bertana, V.; Perrucci, F.; Scaltrito, L.; Pirri, F.; Sangermano, M. Development of 3D printable formulations containing CNT with enhanced electrical properties. Polymer 2017, 109, 246–253. [Google Scholar] [CrossRef]
- Wu, Y.H.; Wei, Y.; Ji, Y. Carbon material/vitrimer composites: Towards sustainable, functional, and high-performance crosslinked polymeric materials. Giant 2023, 13, 100136. [Google Scholar] [CrossRef]
- White, T.J.; Broer, D.J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098. [Google Scholar] [CrossRef]
- Wang, Q.E.; Niu, H.Y.; Wang, Y.W.; Li, C.S. Carbon nanotubes modified nanocomposites based on liquid crystalline elastomers. Mol. Cryst. Liq. Cryst. 2022, 732, 11–49. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, C.F.; Yang, H. Electrically Driven Crosslinked Liquid Crystal Polymers. Chin. J. Chem. 2023, 41, 2925–2938. [Google Scholar] [CrossRef]
- Covas, J.A.; Santos, R.; Freitas, C.; Ferrás, L.; Machado, A.; Paiva, M.C. Manufacture of polymer nanocomposites by melt mixing: Insights, achievements & challenges. In Proceedings of the 6th International PMI Conference, Guimarães, Portugal, 10–12 September 2014. [Google Scholar]
- Armstrong, S.R.; Du, J.; Baer, E. Co-extruded multilayer shape-memory materials: Nano-scale phenomena. Polymer 2014, 55, 626–631. [Google Scholar] [CrossRef]
- Zhang, X.L.; Xu, Y.; Zhang, X.; Wu, H.; Shen, J.B.; Chen, R.; Xiong, Y.; Li, J.; Guo, S.Y. Progress on the layer-by-layer assembly of multilayered polymer composites: Strategy, structural control and applications. Prog. Polym. Sci. 2019, 89, 76–107. [Google Scholar] [CrossRef]
- Zheng, Y.; Zeng, B.B.; Yang, L.H.; Shen, J.B.; Guo, S.Y. Fabrication of Thermoplastic Polyurethane/Polycaprolactone Multilayered Composites with Confined Distribution of MWCNT for Achieving Tunable Thermo- and Electro-Responsive Shape-Memory Performances. Ind. Eng. Chem. Res. 2020, 59, 2977–2987. [Google Scholar] [CrossRef]
- Gupta, A.; Maharjan, A.; Kim, B.S. shape-memory Polyurethane and its Composites for Various Applications. Appl. Sci.-Basel 2019, 9, 4694. [Google Scholar] [CrossRef]
- Vaithylingam, R.; Ansari, M.N.M.; Shanks, R.A. Recent Advances in Polyurethane-Based Nanocomposites: A Review. Polym.-Plast. Technol. Eng. 2017, 56, 1528–1541. [Google Scholar] [CrossRef]
- Balk, M.; Behl, M.; Wischke, C.; Zotzmann, J.; Lendlein, A. Recent advances in degradable lactide-based shape-memory polymers. Adv. Drug Deliv. Rev. 2016, 107, 136–152. [Google Scholar] [CrossRef]
- Qi, X.D.; Yang, J.H.; Zhang, N.; Huang, T.; Zhou, Z.W.; Kuhnert, I.; Potschke, P.; Wang, Y. Selective localization of carbon nanotubes and its effect on the structure and properties of polymer blends. Prog. Polym. Sci. 2021, 123, 101471. [Google Scholar] [CrossRef]
- Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull. 1991, 25, 265–271. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Wang, W.Y.; Yang, J.H.; Zhang, N.; Huang, T.; Wang, Y. Excellent Electroactive shape-memory Performance of EVA/PCL/CNT Blend Composites with Selectively Localized CNT. J. Phys. Chem. C 2016, 120, 22793–22802. [Google Scholar] [CrossRef]
- Memarian, F.; Fereidoon, A.; Khonakdar, H.A.; Jafari, S.H.; Saeb, M.R. Thermo-mechanical and shape-memory behavior of TPU/ABS/MWCNT nanocomposites compatibilized with ABS-g-MAH. Polym. Compos. 2019, 40, 789–800. [Google Scholar] [CrossRef]
- Na, B.; Pan, H.Y.; Lv, R.H.; Luo, M.B.; Zou, S.F.; Fu, Q. Electroactive Shape-Memory Ternary Composite Based on Bi-Component Biodegradable Polyester. J. Macromol. Sci. Part B-Phys. 2012, 51, 1815–1821. [Google Scholar] [CrossRef]
- Ren, D.; Chen, Y.J.; Yang, S.L.; Li, H.; Rehman, H.U.; Liu, H.Z. Fast and Efficient Electric-Triggered Self-Healing shape-memory of CNT@rGO Enhanced PCLPLA Copolymer. Macromol. Chem. Phys. 2019, 220. [Google Scholar] [CrossRef]
- Raja, M.; Ryu, S.H.; Shanmugharaj, A.M. Thermal, mechanical and electroactive shape-memory properties of polyurethane (PU)/poly (lactic acid) (PLA)/CNT nanocomposites. Eur. Polym. J. 2013, 49, 3492–3500. [Google Scholar] [CrossRef]
- Liu, T.Y.; Huang, R.; Qi, X.D.; Dong, P.; Fu, Q. Facile preparation of rapidly electro-active shape-memory thermoplastic polyurethane/polylactide blends via phase morphology control and incorporation of conductive fillers. Polymer 2017, 114, 28–35. [Google Scholar] [CrossRef]
- Huang, X.Y.; Panahi-Sarmad, M.; Dong, K.; Cui, Z.Y.; Zhang, K.L.; Gonzalez, O.G.; Xiao, X.L. 4D printed TPU/PLA/CNT wave structural composite with intelligent thermal-induced shape-memory effect and synergistically enhanced mechanical properties. Compos. Part A-Appl. Sci. Manuf. 2022, 158, 106946. [Google Scholar] [CrossRef]
- Wei, Y.; Huang, R.; Dong, P.; Qi, X.D.; Fu, Q. Preparation of Polylactide/Poly(ether)urethane Blends with Excellent Electro-actuated shape-memory via Incorporating Carbon Black and Carbon Nanotubes Hybrids Fillers. Chin. J. Polym. Sci. 2018, 36, 1175–1186. [Google Scholar] [CrossRef]
- Shao, L.N.; Dai, J.; Zhang, Z.X.; Yang, J.H.; Zhang, N.; Huang, T.; Wang, Y. Thermal and electroactive shape-memory behaviors of poly(L-lactide)/thermoplastic polyurethane blend induced by carbon nanotubes. Rsc Adv. 2015, 5, 101455–101465. [Google Scholar] [CrossRef]
- Lin, J.R.; Chen, L.W. Study on shape-memory behavior of polyether-based polyurethanes. II. Influence of soft-segment molecular weight. J. Appl. Polym. Sci. 1998, 69, 1575–1586. [Google Scholar] [CrossRef]
- Yin, C.X.; Fei, Z.X.; Sun, J.R.; Weng, L.; Wang, X.; Yang, K.K.; Shi, L.Y. High-enthalpy biphasic phase change organogels with shape-memory function based on hydrophobic association and H-bonding interaction. Chem. Eng. J. 2023, 468, 143495. [Google Scholar] [CrossRef]
- Vishwakarma, J.; Jaiswal, S.; Bharti, P.; Dhand, C.; Kumar, R.; Hashmi, S.A.R.; Srivastava, A.K.; Dwivedi, N. Competing and decisive roles of 1D/2D/3D sp2-carbons in controlling the shape switching, contact sliding, and functional properties of polymers. Mater. Today Chem. 2022, 25, 100960. [Google Scholar] [CrossRef]
- Xia, L.; Wu, H.; Qiu, G.X. shape-memory behavior of carbon nanotube-reinforced trans-1,4-polyisoprene and low-density polyethylene composites. Polym. Adv. Technol. 2020, 31, 107–113. [Google Scholar] [CrossRef]
- Kang, S.; Kang, T.H.; Kim, B.S.; Oh, J.; Park, S.; Choi, I.S.; Lee, J.; Son, J.G. 2D reentrant micro-honeycomb structure of graphene-CNT in polyurethane: High stretchability, superior electrical/thermal conductivity, and improved shape-memory properties. Compos. Part B-Eng. 2019, 162, 580–588. [Google Scholar] [CrossRef]
- Bi, H.J.; Ye, G.Y.; Yang, H.Y.; Sun, H.; Ren, Z.C.; Guo, R.; Xu, M.; Cai, L.P.; Huang, Z.H. Near infrared-induced shape-memory polymer composites with dopamine-modified multiwall carbon nanotubes via 3D-printing. Eur. Polym. J. 2020, 136, 109920. [Google Scholar] [CrossRef]
- Yu, K.; Liu, Y.J.; Leng, J.S. shape-memory polymer/CNT composites and their microwave induced shape memory behaviors. RSC Adv. 2014, 4, 2961–2968. [Google Scholar] [CrossRef]
- Raja, M.; Ryu, S.H.; Shanmugharaj, A.M. Influence of surface modified multiwalled carbon nanotubes on the mechanical and electroactive shape-memory properties of polyurethane (PU)/poly(vinylidene diflouride) (PVDF) composites. Colloids Surf. A-Physicochem. Eng. Asp. 2014, 450, 59–66. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Qin, M.M.; Guo, H.Q.; Yoshino, K.; Feng, W. Infrared-Actuated Recovery of Polyurethane Filled by Reduced Graphene Oxide/Carbon Nanotube Hybrids with High Energy Density. ACS Appl. Mater. Interfaces 2013, 5, 10882–10888. [Google Scholar] [CrossRef]
- Cortes, A.; Aguilar, J.L.; Cosola, A.; Sanchez-Romate, X.X.F.; Jimenez-Suarez, A.; Sangermano, M.; Campo, M.; Prolongo, S.G. 4D-Printed Resins and Nanocomposites Thermally Stimulated by Conventional Heating and IR Radiation. ACS Appl. Polym. Mater. 2021, 3, 5207–5215. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhang, F.H.; Liu, Y.J.; Du, S.Y.; Leng, J.S. Photosensitive Composite Inks for Digital Light Processing Four-Dimensional Printing of shape-memory Capture Devices. ACS Appl. Mater. Interfaces 2021, 13, 18110–18119. [Google Scholar] [CrossRef]
- Markad, K.; Lal, A. Synthesis of the multiphase shape-memory hybrid composites hybridized with functionalized MWCNT to improve mechanical and interfacial properties. Polym.-Plast. Technol. Mater. 2022, 61, 650–664. [Google Scholar] [CrossRef]
- Cortes, A.; Perez-Chao, N.; Jimenez-Suarez, A.; Campo, M.; Prolongo, S.G. Sequential and selective shape-memory by remote electrical control. Eur. Polym. J. 2022, 164, 110888. [Google Scholar] [CrossRef]
- Tang, L.H.; Wang, Y.L.; Li, Y.F.; Li, Q. Effects of modified carbon nanotubes with different sizes on properties of epoxy shape-memory polymers. Polym. Compos. 2021, 42, 2989–2999. [Google Scholar] [CrossRef]
- Wang, Y.L.; Tang, L.H.; Li, Y.F.; Li, Q.; Bai, B.J. Preparation of modified multi-walled carbon nanotubes as a reinforcement for epoxy shape-memory polymer composites. Polym. Adv. Technol. 2021, 32, 67–75. [Google Scholar] [CrossRef]
- Abishera, R.; Velmurugan, R.; Gopal, K.V.N. shape-memory behavior of cold-programmed carbon fiber reinforced CNT/epoxy composites. Mater. Res. Express 2018, 5, 085603. [Google Scholar] [CrossRef]
- Abishera, R.; Velmurugan, R.; Gopal, K.V.N. Reversible plasticity shape-memory effect in carbon nanotubes reinforced epoxy nanocomposites. Compos. Sci. Technol. 2016, 137, 148–158. [Google Scholar] [CrossRef]
- Li, H.; Zhong, J.; Meng, J.; Xian, G.J. The reinforcement efficiency of carbon nanotubes/shape-memory polymer nanocomposites. Compos. Part B-Eng. 2013, 44, 508–516. [Google Scholar] [CrossRef]
- Kalita, H.; Karak, N. Bio-Based Hyperbranched Polyurethane/Multi-Walled Carbon Nanotube Nanocomposites as shape-memory Materials. Polym. Compos. 2014, 35, 636–643. [Google Scholar] [CrossRef]
- Kalita, H.; Karak, N. Bio-Based Hyperbranched Thermosetting Polyurethane/Triethanolamine Functionalized Multi-Walled Carbon Nanotube Nanocomposites as shape-memory Materials. J. Nanosci. Nanotechnol. 2014, 14, 5435–5442. [Google Scholar] [CrossRef]
- Moghim, M.H.; Zebarjad, S.M.; Eqra, R. Experimental and modeling investigation of shape-memory behavior of polyurethane/carbon nanotube nanocomposite. Polym. Adv. Technol. 2018, 29, 2496–2504. [Google Scholar] [CrossRef]
- Rana, S.; Cho, J.W.; Park, J.S. Thermomechanical and Water-Responsive shape-memory Properties of Carbon Nanotubes-Reinforced Hyperbranched Polyurethane Composites. J. Appl. Polym. Sci. 2013, 127, 2670–2677. [Google Scholar] [CrossRef]
- Ahmed, N.; Atif, M.; Iftikhar, F.; Nauman, S.; Niaz, B. Polyurethane polystyrene based smart interpenetrating network with quick shape recovery through thermal actuation. Polym. Polym. Compos. 2022, 30. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhang, F.H.; Liu, Y.J.; Du, S.Y.; Leng, J.S. Thermal, mechanical and shape fixity behaviors of shape-memory cyanate under gamma-ray radiation. Smart Mater. Struct. 2022, 31, 045010. [Google Scholar] [CrossRef]
- Luo, H.S.; Zhoua, X.D.; Ma, Y.Y.; Yi, G.B.; Cheng, X.L.; Zhu, Y.; Zu, X.H.; Zhang, N.J.; Huang, B.H.; Yu, L.F. shape-memory-based tunable resistivity of polymer composites. Appl. Surf. Sci. 2016, 363, 59–65. [Google Scholar] [CrossRef]
- Yang, S.; He, Y.; Liu, Y.J.; Leng, J.S. Shape-memory poly(arylene ether ketone)s with tunable transition temperatures and their composite actuators capable of electric-triggered deformation. J. Mater. Chem. C 2020, 8, 303–309. [Google Scholar] [CrossRef]
- Abrisham, M.; Panahi-Sarmad, M.; Sadeghi, G.M.M.; Arjmand, M.; Dehghan, P.; Amirkiai, A. Microstructural design for enhanced mechanical property and shape memory behavior of polyurethane nanocomposites: Role of carbon nanotube, montmorillonite, and their hybrid fillers. Polym. Test. 2020, 89, 106642. [Google Scholar] [CrossRef]
- Yang, S.; He, Y.; Liu, Y.J.; Leng, J.S. Efficient voltage actuators based on rapid heat and electric dual-response poly(aryl ether ketone) shape-memory composites reinforced with radially aligned CNT. Compos. Part A-Appl. Sci. Manuf. 2022, 158, 106940. [Google Scholar] [CrossRef]
- Xie, M.H.; Li, S.X.; Qi, X.M.; Chi, Z.Y.; Shen, L.T.; Islam, Z.; Dong, Y.B. Thermal and infrared light self-repairing, high sensitivity, and large strain sensing range shape-memory MXene/CNT/EVA composites fiber strain sensor for human motion monitoring. Sens. Actuators A-Phys. 2022, 347, 113939. [Google Scholar] [CrossRef]
- Li, Z.; Qi, X.M.; Xu, L.; Lu, H.H.; Wang, W.J.; Jin, X.X.; Islam, Z.M.; Zhu, Y.F.; Fu, Y.Q.; Ni, Q.Q.; et al. Self-Repairing, Large Linear Working Range shape-memory Carbon Nanotubes/Ethylene Vinyl Acetate Fiber Strain Sensor for Human Movement Monitoring. ACS Appl. Mater. Interfaces 2020, 12, 42179–42192. [Google Scholar] [CrossRef]
- Kurup, S.N.; Ellingford, C.; Wan, C.Y. shape-memory properties of polyethylene/ethylene vinyl acetate/carbon nanotube composites. Polym. Test. 2020, 81, 106227. [Google Scholar] [CrossRef]
- Lai, S.M.; Tu, S.N.; Zhang, B.X.; Cai, J.X.; Pan, J.W. Synergistic Effects of Thermal and Near-Infrared Radiation Heating on the Self-Healing Effect of shape-memory Polyethylene Elastomer Nanocomposites. J. Macromol. Sci. Part B-Phys. 2022, 61, 61–79. [Google Scholar] [CrossRef]
- Li, W.B.; Liu, Y.J.; Leng, J.S. shape-memory polymer nanocomposite with multi-stimuli response and two-way reversible shape-memory behavior. RSC Adv. 2014, 4, 61847–61854. [Google Scholar] [CrossRef]
- Xiao, W.X.; Fan, C.J.; Li, B.; Liu, W.X.; Yang, K.K.; Wang, Y.Z. Single-walled carbon nanotubes as adaptable one-dimensional crosslinker to bridge multi-responsive shape-memory network via pi-pi stacking. Compos. Commun. 2019, 14, 48–54. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhou, S.B.; Wang, L.; Gong, T. Electro-active shape-memory Properties of Poly(epsilon-caprolactone)/Functionalized Multiwalled Carbon Nanotube Nanocomposite. ACS Appl. Mater. Interfaces 2010, 2, 3506–3514. [Google Scholar] [CrossRef]
- Gong, T.; Li, W.B.; Chen, H.M.; Wang, L.; Shao, S.J.; Zhou, S.B. Remotely actuated shape-memory effect of electrospun composite nanofibers. Acta Biomater. 2012, 8, 1248–1259. [Google Scholar] [CrossRef]
- Palza, H.; Zapata, P.; Sagredo, C. shape-memory composites based on a thermoplastic elastomer polyethylene with carbon nanostructures stimulated by heat and solar radiation having piezoresistive behavior. Polym. Int. 2018, 67, 1046–1053. [Google Scholar] [CrossRef]
- Pirahmadi, P.; Kokabi, M.; Alamdarnejad, G. Polyvinyl alcohol/chitosan/carbon nanotubes electroactive shape memory nanocomposite hydrogels. J. Appl. Polym. Sci. 2021, 138, 49995. [Google Scholar] [CrossRef]
- Heidarshenas, M.; Kokabi, M.; Hosseini, H. shape-memory conductive electrospun PVA/MWCNT nanocomposite aerogels. Polym. J. 2019, 51, 579–590. [Google Scholar] [CrossRef]
- Du, F.P.; Ye, E.Z.; Tang, C.Y.; Ng, S.P.; Zhou, X.P.; Xie, X.L. Microstructure and shape-memory effect of acidic carbon nanotubes reinforced polyvinyl alcohol nanocomposites. J. Appl. Polym. Sci. 2013, 129, 1299–1305. [Google Scholar] [CrossRef]
- Zhong, J.; Meng, J.; Yang, Z.Y.; Poulin, P.; Koratkar, N. shape-memory fiber supercapacitors. Nano Energy 2015, 17, 330–338. [Google Scholar] [CrossRef]
- Wang, Y.K.; Tian, W.C.; Zhu, G.M. Electro-Induced shape-memory Nanocomposite Containing Conductive Carbon Nanotubes. J. Nanosci. Nanotechnol. 2017, 17, 3673–3679. [Google Scholar] [CrossRef]
- Tekay, E. Low-voltage triggered electroactive and heat-responsive thermoplastic elastomer/carbon nanotube polymer blend composites. Mater. Today Commun. 2023, 35, 106443. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Liu, D.K.; Huang, P.K.; Zheng, H.; Su, Y.Z.; Zhang, L.H.; Zheng, W.E.; Xu, L.Q. Fabrication and characterization of Trans-1,4-polyisoprene/carbon nanotubes nanocomposites with thermo- and electro-active shape-memory effects. J. Appl. Polym. Sci. 2023, 140, e54093. [Google Scholar] [CrossRef]
- Gonzalez, J.; Ardanuy, M.; Gonzalez, M.; Rodriguez, R.; Jovancic, P. Polyurethane shape-memory filament yarns: Melt spinning, carbon-based reinforcement, and characterization. Text. Res. J. 2023, 93, 957–970. [Google Scholar] [CrossRef]
- Namathoti, S.; Vakkalagadda, M.R.K. Development of Multiwalled Carbon Nanotubes/Halloysite Nanotubes Reinforced Thermal Responsive shape-memory Polymer Nanocomposites for Enhanced Mechanical and Shape Recovery Characteristics in 4D Printing Applications. Polymers 2023, 15, 1371. [Google Scholar] [CrossRef]
- Patel, K.K.; Purohit, R.; Hashmi, S.A.R.; Gupta, R.K. Effect of the diameter of MWCNT on shape-memory and mechanical properties of polyurethane composites. J. Polym. Res. 2020, 27, 29. [Google Scholar] [CrossRef]
- Gu, S.Y.; Yan, B.B.; Liu, L.L.; Ren, J. Carbon nanotube-polyurethane shape-memory nanocomposites with low trigger temperature. Eur. Polym. J. 2013, 49, 3867–3877. [Google Scholar] [CrossRef]
- Yusrizal, A.A.; Abdullah, T.K.; Ali, E.S.; Ahmad, S.; Zubir, S.A. Enhanced thermal and tensile behaviour of MWCNT reinforced palm oil polyol based shape-memory polyurethane. Arab. J. Chem. 2022, 15, 103860. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z.X.; Huang, W.B.; Li, J.L.; Yang, J.H.; Wang, Y.; Zhou, Z.W.; Zhang, J.H. Carbon nanotube network structure induced strain sensitivity and shape-memory behavior changes of thermoplastic polyurethane. Mater. Des. 2015, 69, 105–113. [Google Scholar] [CrossRef]
- Memarian, F.; Fereidoon, A.; Ahangari, M.G.; Khonakdar, H.A. Shape-memory and mechanical properties of TPU/ABS blends: The role of pristine versus organo-modified carbon nanotubes. Polym. Compos. 2018, 39, E984–E995. [Google Scholar] [CrossRef]
- Meng, Q.H.; Hu, J.L.; Zhu, Y. Shape-memory Polyurethane/Multiwalled carbon nanotube fibers. J. Appl. Polym. Sci. 2007, 106, 837–848. [Google Scholar] [CrossRef]
- Menon, A.V.; Madras, G.; Bose, S. shape-memory polyurethane nanocomposites with porous architectures for enhanced microwave shielding. Chem. Eng. J. 2018, 352, 590–600. [Google Scholar] [CrossRef]
- Ehteramian, M.; Ghasemi, I.; Azizi, H.; Karrabi, M. Functionalization of multi-walled carbon nanotube and its effect on shape-memory behavior of nanocomposite based on thermoplastic polyurethane/polyvinyl chloride/multi-walled carbon nanotube (TPU/PVC/MWCNT). Iran. Polym. J. 2021, 30, 411–422. [Google Scholar] [CrossRef]
- Zhang, R.; Yan, W.Q.; Yang, Q.; Chen, X.N.; Chen, K.; Ding, Y.; Xue, P. Analysis of thermal-active bending and cyclic tensile shape-memory mechanism of UHMWPE/CNT composite. Polym. Compos. 2022, 43, 9089–9099. [Google Scholar] [CrossRef]
- Koerner, H.; Price, G.; Pearce, N.A.; Alexander, M.; Vaia, R.A. Remotely actuated polymer nanocomposites—Stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat. Mater. 2004, 3, 115–120. [Google Scholar] [CrossRef]
- Namathoti, S.; Vakkalagadda, M.R.K. Mechanical and Shape Recovery Characterization of MWCNT/HNTs-Reinforced Thermal-Responsive Shape-Memory Polymer Nanocomposites. Polymers 2023, 15, 710. [Google Scholar] [CrossRef]
- Deng, Z.X.; Yu, R.; Guo, B.L. Stimuli-responsive conductive hydrogels: Design, properties, and applications. Mater. Chem. Front. 2021, 5, 2092–2123. [Google Scholar] [CrossRef]
- Dong, R.J.; Pang, Y.; Su, Y.; Zhu, X.Y. Supramolecular hydrogels: Synthesis, properties and their biomedical applications. Biomater. Sci. 2015, 3, 937–954. [Google Scholar] [CrossRef]
- del Valle, L.J.; Díaz, A.; Puiggalí, J. Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives. Gels 2017, 3, 27. [Google Scholar] [CrossRef]
- Alfayyadh, A.A.M.; Lotfy, S.; Basfar, A.A.; Khalil, M.I. Influences of poly (vinyl alcohol) molecular weight and carbon nanotubes on radiation crosslinking shape-memory polymers. Prog. Nat. Sci.-Mater. Int. 2017, 27, 316–325. [Google Scholar] [CrossRef]
- Basfar, A.A.; Lotfy, S. Radiation-crosslinking of shape-memory polymers based on poly (vinyl alcohol) in the presence of carbon nanotubes. Radiat. Phys. Chem. 2015, 106, 376–384. [Google Scholar] [CrossRef]
- Tang, L.; Wang, L.; Yang, X.; Fen, Y.Y.; Li, Y.; Feng, W. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Prog. Mater. Sci. 2021, 115, 100702. [Google Scholar] [CrossRef]
- Zhang, X.B.; Pint, C.L.; Lee, M.H.; Schubert, B.E.; Jamshidi, A.; Takei, K.; Ko, H.; Gillies, A.; Bardhan, R.; Urban, J.J.; et al. Optically- and Thermally-Responsive Programmable Materials Based on Carbon Nanotube-Hydrogel Polymer Composites. Nano Lett. 2011, 11, 3239–3244. [Google Scholar] [CrossRef]
- Deng, Z.X.; Guo, Y.; Zhao, X.; Ma, P.X.; Guo, B.L. Multifunctional Stimuli-Responsive Hydrogels with Self-Healing, High Conductivity, and Rapid Recovery through Host-Guest Interactions. Chem. Mater. 2018, 30, 1729–1742. [Google Scholar] [CrossRef]
- Liu, X.X.; Song, T.; Chang, M.M.; Meng, L.; Wang, X.H.; Sun, R.C.; Ren, J.L. Carbon Nanotubes Reinforced Maleic Anhydride-Modified Xylan-g-Poly(N-isopropylacrylamide) Hydrogel with Multifunctional Properties. Materials 2018, 11, 354. [Google Scholar] [CrossRef]
- Norouzi-Esfahany, S.; Kokabi, M.; Alamdarnejad, G. Shape-memory behaviour of polyacrylamide/MWCNT nanocomposite hydrogel under direct and indirect stimulation. Smart Mater. Struct. 2020, 29, 125012. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Takada, T. Topological and SP3 defect structures in nanotubes. Carbon 1995, 33, 973–978. [Google Scholar] [CrossRef]
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef]
- Meng, H.; Hu, J.L. A Brief Review of Stimulus-active Polymers Responsive to Thermal, Light, Magnetic, Electric, and Water/Solvent Stimuli. J. Intell. Mater. Syst. Struct. 2010, 21, 859–885. [Google Scholar] [CrossRef]
- Hu, J.L.; Zhu, Y.; Huang, H.H.; Lu, J. Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 2012, 37, 1720–1763. [Google Scholar] [CrossRef]
- Deng, H.; Lin, L.; Ji, M.Z.; Zhang, S.M.; Yang, M.B.; Fu, Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 2014, 39, 627–655. [Google Scholar] [CrossRef]
- Chan, B.Q.Y.; Low, Z.W.K.; Heng, S.J.W.; Chan, S.Y.; Owh, C.; Loh, X.J. Recent Advances in shape-memory Soft Materials for Biomedical Applications. ACS Appl. Mater. Interfaces 2016, 8, 10070–10087. [Google Scholar] [CrossRef]
- Hines, L.; Petersen, K.; Lum, G.Z.; Sitti, M. Soft Actuators for Small-Scale Robotics. Adv. Mater. 2017, 29, 1603483. [Google Scholar] [CrossRef]
- Han, B.; Zhang, Y.L.; Chen, Q.D.; Sun, H.B. Carbon-Based Photothermal Actuators. Adv. Funct. Mater. 2018, 28, 1802235. [Google Scholar] [CrossRef]
- Liu, T.Z.; Zhou, T.Y.; Yao, Y.T.; Zhang, F.H.; Liu, L.W.; Liu, Y.J.; Leng, J.S. Stimulus methods of multi-functional shape-memory polymer nanocomposites: A review. Compos. Part A-Appl. Sci. Manuf. 2017, 100, 20–30. [Google Scholar] [CrossRef]
- Panahi-Sarmad, M.; Abrisham, M.; Noroozi, M.; Amirkiai, A.; Dehghan, P.; Goodarzi, V.; Zahiri, B. Deep focusing on the role of microstructures in shape-memory properties of polymer composites: A critical review. Eur. Polym. J. 2019, 117, 280–303. [Google Scholar] [CrossRef]
- Liang, W.; Liu, H.; Wang, K.Y.; Qian, Z.H.; Ren, L.Q.; Ren, L. Comparative study of robotic artificial actuators and biological muscle. Adv. Mech. Eng. 2020, 12. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, Y.; Wang, Q.; Shang, L.R. Smart Film Actuators for Biomedical Applications. Small 2022, 18, 2105116. [Google Scholar] [CrossRef]
- Idumah, C.I. Multifunctional properties optimization and stimuli-responsivity of shape-memory polymeric nanoarchitectures and applications. Polym. Eng. Sci. 2023, 63, 1857–1873. [Google Scholar] [CrossRef]
- Grossiord, N.; Loos, J.; Regev, O.; Koning, C.E. Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 2006, 18, 1089–1099. [Google Scholar] [CrossRef]
- Chen, J.; Shi, Y.Y.; Yang, J.H.; Zhang, N.; Huang, T.; Chen, C.; Wang, Y.; Zhou, Z.W. A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. J. Mater. Chem. 2012, 22, 22398–22404. [Google Scholar] [CrossRef]
- Sun, W.J.; Guan, Y.; Wang, Y.Y.; Wang, T.; Xu, Y.T.; Kong, W.W.; Jia, L.C.; Yan, D.X.; Li, Z.M. Low-Voltage Actuator with Bilayer Structure for Various Biomimetic Locomotions. ACS Appl. Mater. Interfaces 2021, 13, 43449–43457. [Google Scholar] [CrossRef]
- Lu, H.B.; Yin, W.L.; Huang, W.M.; Leng, J.S. Self-assembled carboxylic acid-functionalized carbon nanotubes grafting onto carbon fiber for significantly improving electrical actuation of shape-memory polymers. RSC Adv. 2013, 3, 21484–21488. [Google Scholar] [CrossRef]
- Slobodian, P.; Riha, P.; Olejnik, R.; Matyas, J. Accelerated Shape Forming and Recovering, Induction, and Release of Adhesiveness of Conductive Carbon Nanotube/Epoxy Composites by Joule Heating. Polymers 2020, 12, 1030. [Google Scholar] [CrossRef]
- Jung, Y.C.; Yoo, H.J.; Kim, Y.A.; Cho, J.W.; Endo, M. Electroactive shape-memory performance of polyurethane composite having homogeneously dispersed and covalently crosslinked carbon nanotubes. Carbon 2010, 48, 1598–1603. [Google Scholar] [CrossRef]
- Mu, Q.Y.; Wang, L.; Dunn, C.K.; Kuang, X.; Duan, F.; Zhang, Z.; Qi, H.J.; Wang, T.J. Digital light processing 3D printing of conductive complex structures. Addit. Manuf. 2017, 18, 74–83. [Google Scholar] [CrossRef]
- Datta, S.; Henry, T.C.; Sliozberg, Y.R.; Lawrence, B.D.; Chattopadhyay, A.; Hall, A.J. Carbon nanotube enhanced shape-memory epoxy for improved mechanical properties and electroactive shape recovery. Polymer 2021, 212, 123158. [Google Scholar] [CrossRef]
- Peng, Q.Y.; Wei, H.Q.; Qin, Y.Y.; Lin, Z.S.; Zhao, X.; Xu, F.; Leng, J.S.; He, X.D.; Cao, A.Y.; Li, Y.B. Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application. Nanoscale 2016, 8, 18042–18049. [Google Scholar] [CrossRef]
- Zhou, G.X.; Zhang, H.; Xu, S.P.; Gui, X.C.; Wei, H.Q.; Leng, J.S.; Koratkar, N.; Zhong, J. Fast Triggering of shape-memory Polymers using an Embedded Carbon Nanotube Sponge Network. Sci. Rep. 2016, 6, 24148. [Google Scholar] [CrossRef]
- Lu, H.B.; Huang, W.M. Synergistic effect of self-assembled carboxylic acid-functionalized carbon nanotubes and carbon fiber for improved electro-activated polymeric shape-memory nanocomposite. Appl. Phys. Lett. 2013, 102, 231910. [Google Scholar] [CrossRef]
- Wei, K.; Zhu, G.M.; Tang, Y.S.; Li, X.M.; Liu, T.T. The effects of carbon nanotubes on electroactive shape-memory behaviors of hydro-epoxy/carbon black composite. Smart Mater. Struct. 2012, 21, 085016. [Google Scholar] [CrossRef]
- Lee, H.F.; Yu, H.H. Study of electroactive shape-memory polyurethane-carbon nanotube hybrids. Soft Matter 2011, 7, 3801–3807. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, F.H.; Leng, J.S.; Fu, K.; Lu, X.L.; Wang, L.Y.; Cotton, C.; Sun, B.Z.; Gu, B.H.; Chou, T.W. Remotely and Sequentially Controlled Actuation of Electroactivated Carbon Nanotube/shape-memory Polymer Composites. Adv. Mater. Technol. 2019, 4, 1900600. [Google Scholar] [CrossRef]
- Dong, X.Y.; Zhang, F.H.; Wang, L.L.; Liu, Y.J.; Leng, J.S. 4D printing of electroactive shape-changing composite structures and their programmable behaviors. Compos. Part A-Appl. Sci. Manuf. 2022, 157, 106925. [Google Scholar] [CrossRef]
- Sun, W.J.; Sun, H.; Jia, L.C.; Lei, J.; Lin, H.; Tang, J.H.; Wang, Y.Y.; Yan, D.X. Segregated Conductive Carbon Nanotube/Poly(ethylene-co-vinyl acetate) Composites for Low-Voltage Reversible Actuators. Ind. Eng. Chem. Res. 2022, 61, 13912–13920. [Google Scholar] [CrossRef]
- Wang, S.L.; Wang, W.J.; Chi, Z.Y.; Long, Z.M.; Xu, H.Z.; Dong, Y.B. Development of electric- and near-infrared light-driven CNT/EVA shape-memory composite actuators with strain sensing and encrypted information transmitting functionalities. Sens. Actuators A-Phys. 2023, 360. [Google Scholar] [CrossRef]
- Xu, L.; Li, Z.; Lu, H.H.; Qi, X.M.; Dong, Y.B.; Dai, H.B.; Md, Z.I.; Fu, Y.Q.; Ni, Q.Q. Electrothermally-Driven Elongating-Contracting Film Actuators Based on Two-Way shape-memory Carbon Nanotube/Ethylene-Vinyl Acetate Composites. Adv. Mater. Technol. 2022, 7, 2101229. [Google Scholar] [CrossRef]
- Orozco, F.; Salvatore, A.; Sakulmankongsuk, A.; Gomes, D.R.; Pei, Y.T.; Araya-Hermosilla, E.; Pucci, A.; Moreno-Villoslada, I.; Picchioni, F.; Bose, R.K. Electroactive performance and cost evaluation of carbon nanotubes and carbon black as conductive fillers in self-healing shape-memory polymers and other composites. Polymer 2022, 260, 125365. [Google Scholar] [CrossRef]
- He, M.J.; Xiao, W.X.; Xie, H.; Fan, C.J.; Du, L.; Deng, X.Y.; Yang, K.K.; Wang, Y.Z. Facile fabrication of ternary nanocomposites with selective dispersion of multi-walled carbon nanotubes to access multi-stimuli-responsive shape-memory effects. Mater. Chem. Front. 2017, 1, 343–353. [Google Scholar] [CrossRef]
- Huang, C.L.; He, M.J.; Huo, M.; Du, L.; Zhan, C.; Fan, C.J.; Yang, K.K.; Chin, I.J.; Wang, Y.Z. A facile method to produce PBS-PEG/CNT nanocomposites with controllable electro-induced shape-memory effect. Polym. Chem. 2013, 4, 3987–3997. [Google Scholar] [CrossRef]
- Yang, Z.X.; Liu, X.; Shao, Y.; Yin, B.; Yang, M.B. A Facile Fabrication of PCL/OBC/MWCNT Nanocomposite with Selective Dispersion of MWCNT to Access Electrically Responsive shape-memory Effect. Polym. Compos. 2019, 40, E1353–E1363. [Google Scholar] [CrossRef]
- Wang, Z.W.; Zhao, J.; Chen, M.; Yang, M.H.; Tang, L.Y.; Dang, Z.M.; Chen, F.H.; Huang, M.M.; Dong, X. Dually Actuated Triple shape-memory Polymers of Cross-Linked Polycyclooctene-Carbon Nanotube/Polyethylene Nanocomposites. Acs Appl. Mater. Interfaces 2014, 6, 20051–20059. [Google Scholar] [CrossRef]
- Ji, S.B.; Wu, X.W.; Jiang, Y.; Wang, T.; Liu, Z.H.; Cao, C.; Ji, B.H.; Chi, L.F.; Li, D.C.; Chen, X.D. Self-Reporting Joule Heating Modulated Stiffness of Polymeric Nanocomposites for Shape Reconfiguration. ACS Nano 2022, 16, 16833–16842. [Google Scholar] [CrossRef]
- Razzaq, M.Y.; Gonzalez-Gutierrez, J.; Farhan, M.; Das, R.; Ruch, D.; Westermann, S.; Schmidt, D.F. 4D Printing of Electroactive Triple-Shape Composites. Polymers 2023, 15, 832. [Google Scholar] [CrossRef]
- Qi, X.D.; Dong, P.; Liu, Z.W.; Liu, T.Y.; Fu, Q. Selective localization of multi-walled carbon nanotubes in bi-component biodegradable polyester blend for rapid electroactive shape memory performance. Compos. Sci. Technol. 2016, 125, 38–46. [Google Scholar] [CrossRef]
- Xu, Z.; Ding, C.; Wei, D.W.; Bao, R.Y.; Ke, K.; Liu, Z.Y.; Yang, M.B.; Yang, W. Electro and Light-Active Actuators Based on Reversible shape-memory Polymer Composites with Segregated Conductive Networks. ACS Appl. Mater. Interfaces 2019, 11, 30332–30340. [Google Scholar] [CrossRef]
- Ren, D.; Chen, Y.J.; Li, H.; Rehman, H.U.; Cai, Y.L.; Liu, H.Z. High-efficiency dual-responsive shape-memory assisted self-healing of carbon nanotubes enhanced polycaprolactone/thermoplastic polyurethane composites. Colloids Surf. A-Physicochem. Eng. Asp. 2019, 580, 123731. [Google Scholar] [CrossRef]
- Ahir, S.V.; Terentjev, E.M. Fast relaxation of carbon nanotubes in polymer composite actuators. Phys. Rev. Lett. 2006, 96, 133902. [Google Scholar] [CrossRef]
- Prasomsin, W.; Parnklang, T.; Sapcharoenkun, C.; Tiptipakorn, S.; Rimdusit, S. Multiwalled Carbon Nanotube Reinforced Bio-Based Benzoxazine/Epoxy Composites with NIR-Laser Stimulated shape-memory Effects. Nanomaterials 2019, 9, 881. [Google Scholar] [CrossRef]
- Kasemsiri, P.; Lorwanishpaisarn, N.; Pongsa, U.; Ando, S. Reconfigurable shape-memory and Self-Welding Properties of Epoxy Phenolic Novolac/Cashew Nut Shell Liquid Composites Reinforced with Carbon Nanotubes. Polymers 2018, 10, 482. [Google Scholar] [CrossRef]
- Li, W.B.; Liu, Y.J.; Leng, J.S. Programmable and Shape-Memorizing Information Carriers. ACS Appl. Mater. Interfaces 2017, 9, 44792–44798. [Google Scholar] [CrossRef]
- He, Z.W.; Satarkar, N.; Xie, T.; Cheng, Y.T.; Hilt, J.Z. Remote Controlled Multishape Polymer Nanocomposites with Selective Radiofrequency Actuations. Adv. Mater. 2011, 23, 3192–3196. [Google Scholar] [CrossRef]
- Chen, L.; Li, W.; Liu, X.P.; Zhang, C.; Zhou, H.; Song, S.W. Carbon nanotubes array reinforced shape-memory epoxy with fast responses to low-power microwaves. J. Appl. Polym. Sci. 2019, 136, 47563. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.J.; Leng, J.S. Microwave responsive epoxy nanocomposites reinforced by carbon nanomaterials of different dimensions. J. Appl. Polym. Sci. 2018, 135, 45676. [Google Scholar] [CrossRef]
- Miao, J.T.; Ge, M.Y.; Wu, Y.D.; Peng, S.Q.; Zheng, L.H.; Chou, T.Y.; Wu, L.X. 3D printing of sacrificial thermosetting mold for building near-infrared irradiation induced self-healable 3D smart structures. Chem. Eng. J. 2022, 427, 131580. [Google Scholar] [CrossRef]
- Lu, H.B.; Yao, Y.T.; Huang, W.M.; Leng, J.S.; Hui, D. Significantly improving infrared light-induced shape recovery behavior of shape-memory polymeric nanocomposite via a synergistic effect of carbon nanotube and boron nitride. Compos. Part B-Eng. 2014, 62, 256–261. [Google Scholar] [CrossRef]
- Hua, D.C.; Zhang, X.Q.; Ji, Z.Y.; Yan, C.Y.; Yu, B.; Li, Y.D.; Wang, X.L.; Zhou, F. 3D printing of shape changing composites for constructing flexible paper-based photothermal bilayer actuators. J. Mater. Chem. C 2018, 6, 2123–2131. [Google Scholar] [CrossRef]
- Xu, Z.; Wei, D.W.; Bao, R.Y.; Wang, Y.; Ke, K.; Yang, M.B.; Yang, W. Self-Sensing Actuators Based on a Stiffness Variable Reversible Shape Memory Polymer Enabled by a Phase Change Material. ACS Appl. Mater. Interfaces 2022, 14, 22521–22530. [Google Scholar] [CrossRef]
- Lai, S.M.; Guo, G.L.; Han, K.T.; Huang, P.S.; Huang, Z.L.; Jiang, M.J.; Zou, Y.R. Properties and characterization of near infrared-triggered natural rubber (NR)/carnauba wax (CW)/carbon nanotube (CNT) shape-memory bio-nanocomposites. J. Polym. Res. 2019, 26, 86. [Google Scholar] [CrossRef]
- Qi, X.D.; Shao, Y.W.; Wu, H.Y.; Yang, J.H.; Wang, Y. Flexible phase change composite materials with simultaneous light energy storage and light-actuated shape-memory capability. Compos. Sci. Technol. 2019, 181, 107714. [Google Scholar] [CrossRef]
- Xu, X.H.; Fan, P.D.; Ren, J.; Cheng, Y.; Ren, J.K.; Zhao, J.; Song, R. Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL)/multi-wall carbon nanotubes (MWCNT) blend as shape-memory composites. Compos. Sci. Technol. 2018, 168, 255–262. [Google Scholar] [CrossRef]
- Czanikova, K.; Torras, N.; Esteve, J.; Krupa, I.; Kasak, P.; Pavlova, E.; Racko, D.; Chodak, I.; Omastova, M. Nanocomposite photoactuators based on an ethylene vinyl acetate copolymer filled with carbon nanotubes. Sens. Actuators B-Chem. 2013, 186, 701–710. [Google Scholar] [CrossRef]
- Hsu, W.H.; Lin, C.W.; Chen, Y.H.; Wu, S.R.; Tsai, H.Y. Study on carbon nanotube/shape-memory polymer composites and their applications in wireless worm actuator. J. Mech. 2021, 37, 636–650. [Google Scholar] [CrossRef]
- Baughman, R.H.; Cui, C.X.; Zakhidov, A.A.; Iqbal, Z.; Barisci, J.N.; Spinks, G.M.; Wallace, G.G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A.G.; et al. Carbon nanotube actuators. Science 1999, 284, 1340–1344. [Google Scholar] [CrossRef]
- Landi, B.J.; Raffaelle, R.P.; Heben, M.J.; Alleman, J.L.; VanDerveer, W.; Gennett, T. Single wall carbon nanotube-Nafion composite actuators. Nano Lett. 2002, 2, 1329–1332. [Google Scholar] [CrossRef]
- Lee, J.A.; Li, N.; Haines, C.S.; Kim, K.J.; Lepró, X.; Ovalle-Robles, R.; Kim, S.J.; Baughman, R.H. Electrochemically Powered, Energy-Conserving Carbon Nanotube Artificial Muscles. Adv. Mater. 2017, 29, 1700870. [Google Scholar] [CrossRef]
- Tahhan, M.; Truong, V.T.; Spinks, G.M.; Wallace, G.G. Carbon nanotube and polyaniline composite actuators. Smart Mater. Struct. 2003, 12, 626–632. [Google Scholar] [CrossRef]
- Akdogan, E.K.; Allahverdi, M.; Safari, A. Piezoelectric composites for sensor and actuator applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 746–775. [Google Scholar] [CrossRef]
- Il’ina, M.V.; Il’in, O.I.; Blinov, Y.F.; Konshin, A.A.; Konoplev, B.G.; Ageev, O.A. Piezoelectric Response of Multi-Walled Carbon Nanotubes. Materials 2018, 11, 638. [Google Scholar] [CrossRef]
- Sharafkhani, S.; Kokabi, M. High performance flexible actuator: PVDF nanofibers incorporated with axially aligned carbon nanotubes. Compos. Part B-Eng. 2021, 222, 109060. [Google Scholar] [CrossRef]
- Luo, H.S.; Li, Z.W.; Yi, G.B.; Zu, X.H.; Wang, H.; Huang, H.L.; Wang, Y.J.; Liang, Z.F.; Zhang, S. Multi-stimuli responsive carbon nanotube-shape-memory polymeric composites. Mater. Lett. 2014, 137, 385–388. [Google Scholar] [CrossRef]
- Toncheva, A.; Willocq, B.; Khelifa, F.; Douheret, O.; Lambert, P.; Dubois, P.; Raquez, J.M. Bilayer solvent and vapor-triggered actuators made of cross-linked polymer architectures via Diels-Alder pathways. J. Mater. Chem. B 2017, 5, 5556–5563. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, B.L.; Wu, H.; Liang, Y.P.; Ma, P.X. Injectable antibacterial conductive nanocomposite cryogels with rapid shape recovery for noncompressible hemorrhage and wound healing. Nat. Commun. 2018, 9, 2784. [Google Scholar] [CrossRef]
- Wang, C.C.; Wang, L.; Zhang, Z.W.; Zhang, N.; Huang, Y.A. Water-driven shape-memory nanocomposite fibers for actuators. Polym. Compos. 2023, 44, 4215–4226. [Google Scholar] [CrossRef]
- Idumah, C.I. Novel trends in self-healable polymer nanocomposites. J. Thermoplast. Compos. Mater. 2021, 34, 834–858. [Google Scholar] [CrossRef]
- Terryn, S.; Langenbach, J.; Roels, E.; Brancart, J.; Bakkali-Hassani, C.; Poutrel, Q.A.; Georgopoulou, A.; Thuruthel, T.G.; Safaei, A.; Ferrentino, P.; et al. A review on self-healing polymers for soft robotics. Mater. Today 2021, 47, 187–205. [Google Scholar] [CrossRef]
- Menon, A.V.; Madras, G.; Bose, S. The journey of self-healing and shape-memory polyurethanes from bench to translational research. Polym. Chem. 2019, 10, 4370–4388. [Google Scholar] [CrossRef]
- Houbben, M.; Sanchez, C.P.; Vanderbemden, P.; Noels, L.; Jerome, C. MWCNT filled PCL covalent adaptable networks: Towards reprocessable, self-healing and fast electrically-triggered shape-memory composites. Polymer 2023, 278, 125992. [Google Scholar] [CrossRef]
- Orozco, F.; Kaveh, M.; Santosa, D.S.; Lima, G.M.R.; Gomes, D.R.; Pei, Y.T.; Araya-Hermosilla, R.; Moreno-Villoslada, I.; Picchioni, F.; Bose, R.K. Electroactive Self-Healing shape-memory Polymer Composites Based on Diels-Alder Chemistry. ACS Appl. Polym. Mater. 2021, 3, 6147–6156. [Google Scholar] [CrossRef]
- Fan, L.F.; Rong, M.Z.; Zhang, M.Q.; Chen, X.D. Repeated Intrinsic Self-Healing of Wider Cracks in Polymer via Dynamic Reversible Covalent Bonding Molecularly Combined with a Two-Way Shape Memory Effect. ACS Appl. Mater. Interfaces 2018, 10, 38538–38546. [Google Scholar] [CrossRef]
- Bai, J.; Shi, Z.X. Dynamically Cross-linked Elastomer Hybrids with Light-Induced Rapid and Efficient Self-Healing Ability and Reprogrammable shape-memory Behavior. ACS Appl. Mater. Interfaces 2017, 9, 27213–27222. [Google Scholar] [CrossRef]
- Cui, X.H.; Chen, J.W.; Zhu, Y.T.; Jiang, W. Natural sunlight-actuated shape-memory materials with reversible shape change and self-healing abilities based on carbon nanotubes filled conductive polymer composites. Chem. Eng. J. 2020, 382, 122823. [Google Scholar] [CrossRef]
- Xiao, G.F.; Wang, Y.; Zhang, H.; Zhu, Z.D.; Fu, S.Y. Cellulose nanocrystal mediated fast self-healing and shape-memory conductive hydrogel for wearable strain sensors. Int. J. Biol. Macromol. 2021, 170, 272–283. [Google Scholar] [CrossRef]
- Dai, J.Y.; Wang, Z.C.; Wu, Z.Z.; Fang, Z.Y.; Heliu, S.Y.; Yang, W.T.; Bai, Y.; Zhang, X. shape-memory Polymer Constructed by pi-pi Stacking with Ultrafast Photoresponse and Self-Healing Performance. ACS Appl. Polym. Mater. 2023, 5, 2575–2582. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.M.; Zhang, S.D.; Yin, R.; Liu, X.H.; He, Y.X.; Dai, K.; Shan, C.X.; Guo, J.; Liu, C.T.; et al. Electrically conductive polymer composites for smart flexible strain sensors: A critical review. J. Mater. Chem. C 2018, 6, 12121–12141. [Google Scholar] [CrossRef]
- Wu, G.Z.; Gu, Y.J.; Hou, X.L.; Li, R.Q.; Ke, H.Z.; Xiao, X.L. Hybrid Nanocomposites of Cellulose/Carbon-Nanotubes/Polyurethane with Rapidly Water Sensitive shape-memory Effect and Strain Sensing Performance. Polymers 2019, 11, 1586. [Google Scholar] [CrossRef]
- Luo, H.S.; Ma, Y.Y.; Li, W.J.; Yi, G.B.; Cheng, X.L.; Ji, W.J.; Zu, X.H.; Yuan, S.J.; Li, J.H. shape-memory-enhanced water sensing of conductive polymer composites. Mater. Lett. 2015, 161, 189–192. [Google Scholar] [CrossRef]
- Lu, H.B.; Liu, Y.J.; Gou, J.H.; Leng, J.S.; Du, S.Y. Surface coating of multi-walled carbon nanotube nanopaper on shape-memory polymer for multifunctionalization. Compos. Sci. Technol. 2011, 71, 1427–1434. [Google Scholar] [CrossRef]
- Kernin, A.; Ventura, L.; Soul, A.; Chen, K.; Wan, K.N.; Lu, W.B.; Steiner, P.; Kocabas, C.; Papageorgiou, D.; Goutianos, S.; et al. Kirigami inspired shape programmable and reconfigurable multifunctional nanocomposites for 3D structures. Mater. Des. 2022, 224, 111335. [Google Scholar] [CrossRef]
Stimuli | Mechanism of Actuation | Advantages | Disadvantages |
---|---|---|---|
Heat [4,5,8,9] | Thermal | Excellent shape-memory effect | Control of local environment |
Electric [5,8] | Electro-thermal | Allows remote actuation | Requires high volume filleraddition to reach electrical percolation threshold |
Electro-chemical | Fast actuation | Deformation may alter resistivityvan der Waals forces compromise homogeneity of the matrix | |
Chemical [5,9] | Adsorption | Targeted design for biological environments | Slow recovery time |
pH changes | |||
Chemical bonding | |||
Magnetic [5,10] | Magneto-thermal | Allows remote actuation No need for a network of adjacent particles | Requires filler addition |
Magneto-mechanical | Possibility of thermoregulatory limit (Curie temperature) | Power requirements | |
Light [4,5,8] | Photo-thermal | Remote wireless actuation | Requires filler addition or matrix modification |
Photo-chemical | Complex shape shift Fast actuation |
CNT | Polymers | |
---|---|---|
Electrical conductivity | 103–105 [31] | 10−15–10−8 [31] |
(S·m−1) | ||
Thermal conductivity | 103 * [27] | 0.1 * [27] |
(W·m−1·K−1) | ||
Coeff. of thermal expansion | [32] | 20–200 |
(ppm·K−1) | ||
Young’s modulus | [33] | 1.2 × 10−2–4 |
(GPa) |
CNT Type | Content | Polymer | Processing | Temperature | Recovery Rate | Year | Reference | |||
---|---|---|---|---|---|---|---|---|---|---|
(wt.%) | (%) | (%) | (°C) | (°C) | (s) | |||||
MWCNT | 0.1 | AR | Three-roll mill + 3D printing (DLP) | 65–94 | 94–99 | 15–190 | 15–190 | - | 2021 | [87] |
MWCNT | 0.5 | EPAc/PEGDMA | Stirring + 3D printing | 81–97 | 81–100 | 67 | - | 100 | 2021 | [88] |
fMWCNT | 0.4 | ER | Stirring + lamination | 96 | 96 | 71 | 91 | 5 | 2022 | [89] |
0.6 | 96 | 96 | 69 | 89 | 5 | |||||
0.4 | 96 | 96 | 73 | 93 | 5 | |||||
0.6 | 96 | 96 | 69 | 89 | 5 | |||||
MWCNT | 0.2 | Three-roll mill | 75–90 | >85 | 68–155 | Tg + 10 | - | 2022 | [90] | |
0.1 | Stirring + curing | - | 99 | 68 | 68 | 30 | 2021 | [91] | ||
0.2 | - | 95 | 73 | 73 | 70 | |||||
0.5 | - | 86 | 77 | 77 | 130 | |||||
1 | - | 93 | 78 | 78 | 80 | |||||
0.1 | - | 95 | 70 | 70 | 90 | |||||
0.2 | - | 86 | 73 | 73 | 100 | |||||
0.5 | - | 83 | 76 | 76 | 150 | |||||
1 | - | 83 | 86 | 86 | 90 | |||||
fMWCNT | 0.1 | - | ∼100 | 97 | 107 | 15 | 2021 | [92] | ||
0.2 | - | ∼100 | 101 | 111 | 15 | |||||
0.5 | - | ∼100 | 107 | 117 | 15 | |||||
1 | - | ∼100 | 109 | 119 | 20 | |||||
hMWCNT | 1 | 80–95 | 100 | 43 and 44 | 80 | 30 | 2018 | [93] | ||
MWCNT | 0.49 | 98 | - | 44 | 53 | - | 2016 | [94] | ||
0.99 | 98 | - | 44 | 51 | - | |||||
1.47 | 99 | - | 45 | 51 | - | |||||
1.96 | 99 | - | 45 | 51 | - | |||||
0.42 and 0.83 | High shear + curing | ∼95 | ∼100 | 100 | 100 | - | 2013 | [95] | ||
fMWCNT | 0.2 | HBPU | In situ polymerization | 99.5 | 99 | ∼40 | 60 | 115 | 2014 | [96] |
1 | 99.5 | 99 | ∼40 | 60 | 91 | |||||
2 | 99.5 | 99 | ∼40 | 60 | 73 | |||||
fMWCNT | 0.2 | HBPU/ER | In situ polymerization | 99 | 99.3 | ∼40 | 60 | 18 | 2014 | [97] |
1 | 99 | 99.3 | ∼40 | 60 | 14 | |||||
2 | 99 | 99.3 | ∼40 | 60 | 10 | |||||
fMWCNT | 0.5 | PU | Solvent casting | 84 | 98 | 78 | 90 | - | 2018 | [98] |
1 | 85 | 95 | 85 | 90 | 30 | |||||
2 | 88 | 99 | 86 | 90 | - | |||||
MWCNT | 2 | In situ polymerization | 87–75 | 87–78 | 51 | 40 | 60 | 2013 | [99] | |
fMWCNT | 1 | PU/PS | In situ polymerization | - | 100 | 85–90 | 85–100 | 17 | 2022 | [100] |
CNT Type | Content | Polymer | Processing | Ttrans | Temperature | Recovery Rate | Year | Reference | ||
---|---|---|---|---|---|---|---|---|---|---|
(%) | (%) | (°C) | (°C) | (s) | ||||||
hMWCNT | - | EVA | Ultrasonication + soaking | 99 | 94 | 60 | 80 | - | 2022 | [106] |
fCNT | - | 99 | 96 | 66 | 80 | - | 2020 | [107] | ||
MWCNT | 1 wt.% | LDPE/EVA (80:20) | Melt mixing + compression molding | 69 | 100 | 80 | 140 | - | 2020 | [108] |
3 wt.% | 82 | 100 | 80 | 140 | - | |||||
MWCNT | 0.5 phr | mPE-g-AA + arginine | Solvent casting + compression molding | ∼90 | 82 | 54 | 70 | - | 2022 | [109] |
MWCNT | 5 wt.% | PAEK | Solvent casting | >98 | 94 | 171 | 181 | - | 2022 | [105] |
10 wt.% | >98 | 95–99 | 171 | 181 | 12 | |||||
15 wt.% | >98 | 78 | 171 | 181 | - | |||||
CNT | 10 wt.% | - | ∼100 | 131 | 141 | 10 | ||||
hMWCNT | - | PCL | Solvent casting | 99 | 96 | 41 | 41 | 22 | 2014 | [110] |
SWCNT | 1, 2, and 3 wt.% | ∼99 | 87–96 | 43–55 | 60 | - | 2019 | [111] | ||
fMWCNT | 5 wt.% | - | ∼95 | - | 55 | 20 | 2010 | [112] | ||
hSWCNT | - | Electrospinning | 84 | 92 | ∼45 | 46 | 120 | 2012 | [113] | |
MWCNT | 14 wt.% | PE | Melt mixing + compression molding | - | ∼100 | 37 | 60 | 4800 | 2018 | [114] |
SWCNT | 2 wt.% | PLA/TPU (60:40) | Melt mixing + compression molding | ∼100 | 30 | 41 | 80 | - | 2019 | [50] |
4 wt.% | ∼100 | 70 | 43 | 80 | - | |||||
MWCNT | 6 wt.% | PLA/TPU (70:30) | High-speed mixer + melt mixing + 3D printing | 95–97 | 86–98 | ∼65 | 65 | 17 | 2022 | [75] |
MWCNT | 0.25 wt.% | PVA | Stirring + freeze–thaw | - | 100 | 50 | 53 | 62 | 2021 | [115] |
fMWCNT | 1 wt.% | Stirring + electrospinning + freeze–thaw | - | 100 | - | 95 | 15 | 2019 | [116] | |
1.5 wt.% | - | 100 | - | 95 | 16 | |||||
2 wt.% | - | 100 | - | 95 | 19 | |||||
3 wt.% | - | 100 | - | 95 | 22 | |||||
1 wt.% | Solvent casting | - | ∼75 | - | 90 | 16 | 2013 | [117] | ||
2 wt.% | - | ∼85 | - | 90 | 33 | |||||
3 wt.% | - | >90 | - | 90 | 36 | |||||
4 wt.% | - | ∼100 | - | 90 | 40 | |||||
SWCNT | >25 wt.% | Wet spinning PVA-SWCNT + MWCNT coating | ∼100 | - | 75 | 120 | - | 2015 | [118] | |
MWCNT | 0.25 wt.% | PVA/chitosan (75:25) | Stirring + freeze–thaw | - | 54 | 50 | 53 | 82 | 2021 | [115] |
MWCNT | 1.5 wt.% | SBS/LDPE | Melt mixing + compression molding | - | - | ∼110 | 110 | 240 | 2017 | [119] |
MWCNT | 1 phr | SIS/PEO (50:50) | Melt mixing | 97 | 86 | 75 | 75 | 240 | 2023 | [120] |
3 phr | 98 | 82 | 99 | 75 | 240 | |||||
5 phr | 97 | 82 | 98 | 75 | 300 | |||||
10 phr | 97 | 74 | 99 | 75 | 600 | |||||
SWCNT | 0.5 wt.% | TPI | Solvent casting + compression molding | - | 100 | ∼50 | 100 | 25 | 2023 | [121] |
1 wt.% | - | 100 | ∼50 | 100 | 35 | |||||
1.5 wt.% | - | 100 | ∼50 | 100 | 35 | |||||
2 wt.% | - | 100 | ∼50 | 100 | 35 | |||||
2.5 wt.% | - | 92 | ∼50 | 100 | 40 | |||||
CNT | 1 phr | TPI/LDPE | Two-roll mill | 98 | 96 | 108 | 130 | - | 2020 | [81] |
2 phr | 97 | 95 | 107 | 130 | - | |||||
3 phr | 97 | 92 | 107 | 130 | - | |||||
MWCNT | 0.3 wt.% | TPU | Melt mixing + melt spinning | 81 | 86 | ∼45 | - | - | 2023 | [122] |
0.5 wt.% | 97 | 83 | ∼60 | - | - | |||||
0.5 wt.% | Melt mixing + 3D printing | - | - | 57 | 80 | 130 | ||||
1 wt.% | - | - | 57 | 80 | 90 | 2023 | [123] | |||
0.5 wt.% | Melt mixing + injection molding | - | - | 57 | 80 | 40 | ||||
0.5 wt.% | - | - | 57 | 80 | 28 | |||||
2 wt.% | ∼92 | ∼80 | ∼57 | - | 33 and 160 | 2022 | [80] | |||
1 wt.% | - | 99 | - | 60 | 60 | |||||
1 wt.% | - | 95 | - | 60 | 60 | 2020 | [124] | |||
1 wt.% | - | 90 | - | 60 | 60 | |||||
CNT | 1 wt.% | ∼99 | ∼98 | -14 | 25 | - | 2013 | [125] | ||
fCNT | 1 wt.% | ∼99 | ∼99 | -11 | 25 | 120 | ||||
fMWCNT | 0.5 wt.% | Melt mixing + compression molding | 100 | 100 | 43 | 50 | 3.3 and 42 | 2022 | [126] | |
1 wt.% | 99 | 100 | 43 | 50 | 3 and 38 | |||||
1.5 wt.% | 99 | 100 | 43 | 50 | 2.7 and 36 | |||||
2 wt.% | 98 | 100 | 43 | 50 | 2 and 33 | |||||
CNT | 0.5 wt.% | - | 72 | -32 | 25 | 60 | 2015 | [127] | ||
2 wt.% | - | 72 | -31 | 25 | 60 | |||||
5 wt.% | - | 71 | -30 | 25 | 60 | |||||
MWCNT | 1 wt.% | Melt mixing + two-roll mill | 95 | 92 | -32 | 10 | 13 | 2020 | [104] | |
3 wt.% | 98 | 95 | -29 | 10 | 12 | |||||
5 wt.% | 99 | 92 | -28 | 10 | 12 | |||||
hMWCNT | 0.5 wt.% | 94 | 93 | -30 | 10 | 12 | ||||
1.5 wt.% | 98 | 96 | -29 | 10 | 12 | |||||
2.5 wt.% | 99 | 96 | -27 | 10 | 12 | |||||
hSWCNT | ∼2 wt.% | Ice templating + solvent casting | 96 | 91 | ∼40 | 70 | 23 | 2019 | [82] | |
hMWCNT | - | Dip coating | 89 - 93 | 83 - 84 | 77 - 84 | 90 | 10 | 2016 | [102] | |
MWCNT | 2 wt.% | TPU/ABS | Melt mixing + compression molding | 99 | 100 | -40 | 25 | - | 2019 | [70] |
99 | 99 | -39 | 25 | - | ||||||
fMWCNT | 0.5 wt.% | TPU/ABS (80:20) | Melt mixing + compression molding | 99 | 99 | - | 25 | - | 2018 | [128] |
1 wt.% | 99 | 98 | - | 25 | - | |||||
2 wt.% | 100 | 98 | - | 25 | - | |||||
3 wt.% | 100 | 97 | - | 25 | - | |||||
5 wt.% | 99 | 96 | - | 25 | - | |||||
0.5 wt.% | 98 | 98 | - | 25 | - | |||||
1 wt.% | 100 | 98 | - | 25 | - | |||||
2 wt.% | 100 | 98 | - | 25 | - | |||||
3 wt.% | 100 | 97 | - | 25 | - | |||||
5 wt.% | 99 | 97 | - | 25 | - | |||||
fMWCNT | 1 wt.% | TPU/PCL | In situ polymerization + melt mixing | - | 92 | 48 | 70 | - | 2007 | [129] |
3 wt.% | - | 87 | 45 | 70 | - | |||||
5 wt.% | - | 85 | 45 | 70 | - | |||||
7 wt.% | - | 55 | 44 | 70 | - | |||||
MWCNT | 2.5 wt.% | TPU/PCL (50:50) | Melt mixing | 91 | 77 | - | 70 | - | 2020 | [63] |
2.5 wt.% | 94 | 80 | - | 70 | - | |||||
2.5 wt.% | 94 | 83 | - | 70 | - | |||||
2.5 wt.% | 95 | 86 | - | 70 | - | |||||
MWCNT | 3 wt.% | TPU/PEG | Phase inversion | 91 | 81 | - | 50 | - | 2018 | [130] |
3 wt.% | Melt mixing | 75 | 61 | - | 50 | - | ||||
fMWCNT | 1 wt.% | TPU/PVC (30:70) | Solvent casting | 87 | 98 | 20 | 50 | - | 2021 | [131] |
1 wt.% | TPU/PVC (50:50) | 92 | 82 | 55 | 85 | - | ||||
0.5 wt.% | TPU/PVC (60:40) | 77 | 93 | 30 | 60 | - | ||||
1 wt.% | 89 | 96 | 30 | 60 | - | |||||
0.5 wt.% | 87 | 96 | 31 | 61 | - | |||||
1 wt.% | 90 | 96 | 35 | 65 | - | |||||
MWCNT | 0.5 wt.% | 72 | 92 | 29 | 59 | - | ||||
1 wt.% | 82 | 92 | 30 | 60 | - | |||||
MWCNT | 3 wt.% | UHMWPE | Solvent casting + compression molding | 95 | 94 | - | 115 | 120 | 2022 | [132] |
CNT Type | Content | Polymer | Processing | EM Region | Heat Flux Density | Ttrans (°C) | Recovery Time (s) | Year | Reference |
---|---|---|---|---|---|---|---|---|---|
CNT | 0.4 | ER | Stirring + curing | RF | - | 59 | - | 2011 | [190] |
MWCNT | 2 | NIR | 18,000 | 102 | 60 | 2022 | [193] | ||
hCNT | 4 | High shear + curing | NIR | - | 107 | 60 | 2014 | [194] | |
MWCNT | 0.5 | Stirring + ultrasonication + curing | RF | - | 111 | 35 | 2017 | [189] | |
MWCNT | 0.1 | ER/BR | Stirring + curing | NIR | - | 102 | 36 | 2019 | [187] |
0.3 | - | 107 | 16 | ||||||
0.5 | - | 97 | 13 | ||||||
MWCNT | 0.1 | ER/CNSL (70:30) | Ultrasonication + curing | NIR | 120 | ∼50 | 100 | 2018 | [188] |
0.3 | 120 | 95 | |||||||
0.5 | 120 | 65 |
CNT Type | Content | Polymer | Processing | EM Region | Heat Flux Density | Ttrans (°C) | Deformation (s) | Recovery Time (s) | Year | Reference |
---|---|---|---|---|---|---|---|---|---|---|
MWCNT | 2 wt.% | EUG | Solvent casting + two-roll mill | NIR | - | ∼35 | - | 30–100 | 2023 | [7] |
fMWCNT | 2 wt.% | EVA | Ultrasound adsorption | NIR | 2000 | 77 | - | 50 | 2013 | [174] |
MWCNT | 0.1 wt.% | Solvent casting + compression molding | Visible | - | - | 35 | 65 | 2012 | [6] | |
- | - | 6 | 30 | |||||||
- | - | 14 | 32 | |||||||
- | - | 15 | 15 | |||||||
MWCNT | 0.5 phr | NR/CW (60:40) | Melt mixing + compression molding | NIR | - | ∼75 | - | 120 | 2019 | [197] |
MWCNT | 0.1 wt.% | PEO/PW | Melt mixing + compression molding | IR | 2000 | ∼80 | 60 | 240 | 2022 | [196] |
1 phr | PEO/PW (40:60) | Solvent casting | NIR | 200 | 46 | - | 90 | 2019 | [198] | |
3 phr | - | 60 | ||||||||
5 phr | - | 50 | ||||||||
MWCNT | 0.1 wt.% | PBS/PCL | Solvent casting | NIR | 3200 | 67 | - | 15 | 2017 | [177] |
SWCNT | 3 wt.% | PCL-Py | Solvent casting | NIR | 90 | 65 | - | 50 | 2019 | [111] |
- | 60 | |||||||||
MWCNT | 0.5 wt.% | PLA/paper | Solvent casting + melt mixing + 3D printing | NIR | 2750 | 62 | 4 | 25 | 2018 | [195] |
MWCNT | 0.5 wt.% | POE | Ball milling + compression molding | IR | 2500 | 60 | 15 | - | 2019 | [184] |
hMWCNT | 0.25 wt.% | TPU | Solvent casting | NIR | 300 | 38 | - | 18 | 2013 | [86] |
MWCNT | 1–5 wt.% | TPU/PCL | Melt mixing + compression molding | NIR | - | ∼60 | - | 33 | 2018 | [199] |
fMWCNT | 3 wt.% | TPU/PCL (60:40) | Solvent casting + Melt mixing + 3D printing | - | 57 | - | 50 | 2020 | [83] | |
- | - | 150 | ||||||||
- | - | 33 | ||||||||
- | - | 120 |
Polymer | Trigger | Filler | Mechanism | Reference |
---|---|---|---|---|
fu-PCL | Electrical | MWCNT | rDA | [216] |
fu-PK | [217] | |||
TPU/SBS | Reversible bonds | [218] | ||
PLA/PCL | hCNT | SME | [72] | |
ER | Light | MWCNT | Reversible disulfide bonds | [193] |
fu-SBS | rDA | [219] | ||
mPE-g-AA | SME | [109] | ||
PPC | [220] | |||
TPU/PCL | [199] | |||
PVA | hMWCNT | [221] | ||
fCNT | [222] | |||
EVA | hMWCNT | [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, M.M.; Proença, M.P.; Covas, J.A.; Paiva, M.C. Shape-Memory Polymers Based on Carbon Nanotube Composites. Micromachines 2024, 15, 748. https://doi.org/10.3390/mi15060748
da Silva MM, Proença MP, Covas JA, Paiva MC. Shape-Memory Polymers Based on Carbon Nanotube Composites. Micromachines. 2024; 15(6):748. https://doi.org/10.3390/mi15060748
Chicago/Turabian Styleda Silva, Mariana Martins, Mariana Paiva Proença, José António Covas, and Maria C. Paiva. 2024. "Shape-Memory Polymers Based on Carbon Nanotube Composites" Micromachines 15, no. 6: 748. https://doi.org/10.3390/mi15060748
APA Styleda Silva, M. M., Proença, M. P., Covas, J. A., & Paiva, M. C. (2024). Shape-Memory Polymers Based on Carbon Nanotube Composites. Micromachines, 15(6), 748. https://doi.org/10.3390/mi15060748