Design and Evaluation of an Eye Mountable AutoDALK Robot for Deep Anterior Lamellar Keratoplasty
Abstract
:1. Introduction
2. Previous Works
3. Materials and Methods
3.1. Clinical Requirements for the AutoDALK Robot
3.2. AutoDALK Design
3.3. Piezo Actuators
3.4. Graphical User Interface and Control
3.5. Optical Coherence Tomography (OCT) Design
3.5.1. Common Path Swept Source OCT Imaging Sensor
3.5.2. OCT Distal Sensor Integrated Needle
3.6. Clinical Workflow
4. Experiments and Results
4.1. In Silico Experiments: Finite Element Analysis of the Linear Drive
4.1.1. Mesh Analysis Study to Determine FEA Parameters
4.1.2. FEA Results
4.2. Bench Testing Experiments: AutoDALK Positional Accuracy and Repeatability
4.3. Bench Testing Experiments: Linear Thrust Performance
4.4. Ex Vivo Experiments: AutoDALK versus Freehand Comparison Study
4.4.1. Experimental Testbeds
4.4.2. Average Needle Depth at Injection
4.4.3. Pneumodissection Measurements
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DelMonte, D.W.; Kim, T. Anatomy and physiology of the cornea. J. Cataract. Refract. Surg. 2011, 37, 588–598. [Google Scholar] [CrossRef]
- Sridhar, M.S. Anatomy of cornea and ocular surface. Indian J. Ophthalmol. 2018, 66, 190–194. [Google Scholar] [CrossRef]
- Goldstein, E.B. Sensation and Perception; Thomson Wadsworth: Belmont, CA, USA, 2007; ISBN 978-0-534-55810-9. [Google Scholar]
- Krachmer, J.H.; Feder, R.S.; Belin, M.W. Keratoconus and related noninflammatory corneal thinning disorders. Surv. Ophthalmol. 1984, 28, 293–322. [Google Scholar] [CrossRef]
- Dohlman, T.H.; Yin, J.; Dana, R. Methods for Assessing Corneal Opacity. Semin. Ophthalmol. 2019, 34, 205–210. [Google Scholar] [CrossRef]
- Wang, E.Y.; Kong, X.; Wolle, M.; Gasquet, N.; Ssekasanvu, J.; Mariotti, S.P.; Bourne, R.; Taylor, H.; Resnikoff, S.; West, S. Global Trends in Blindness and Vision Impairment Resulting from Corneal Opacity 1984–2020: A Meta-analysis. Ophthalmology 2023, 130, 863–871. [Google Scholar] [CrossRef]
- Ghosheh, F.R.; Cremona, F.A.; Rapuano, C.J.; Cohen, E.J.; Ayres, B.D.; Hammersmith, K.M.; Raber, I.M.; Laibson, P.R. Trends in penetrating keratoplasty in the United States 1980–2005. Int. Ophthalmol. 2008, 28, 147–153. [Google Scholar] [CrossRef]
- Gurnani, B.; Czyz, C.N.; Mahabadi, N.; Havens, S.J. Corneal Graft Rejection. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK519043/ (accessed on 19 September 2023).
- Guilbert, E.; Bullet, J.; Sandali, O.; Basli, E.; Laroche, L.; Borderie, V.M. Long-term rejection incidence and reversibility after penetrating and lamellar keratoplasty. Am. J. Ophthalmol. 2013, 155, 560–569.e2. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, J.K.; Gore, P.K.; Lim, C.-Y.; Chuck, R.S. Keratoplasty in the United States: A 10-Year Review from 2005 through 2014. Ophthalmology 2015, 122, 2432–2442. [Google Scholar] [CrossRef]
- Fogla, R.; Padmanabhan, P. Results of deep lamellar keratoplasty using the big-bubble technique in patients with keratoconus. Am. J. Ophthalmol. 2006, 141, 254–259. [Google Scholar] [CrossRef]
- Anwar, M.; Teichmann, K.D. Big-bubble technique to bare Descemet’s membrane in anterior lamellar keratoplasty. J. Cataract. Refract. Surg. 2002, 28, 398–403. [Google Scholar] [CrossRef]
- Borderie, V.M.; Sandali, O.; Bullet, J.; Gaujoux, T.; Touzeau, O.; Laroche, L. Long-term results of deep anterior lamellar versus penetrating keratoplasty. Ophthalmology 2012, 119, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Pasricha, N.D.; Shieh, C.; Carrasco-Zevallos, O.M.; Keller, B.; Cunefare, D.; Mehta, J.S.; Farsiu, S.; Izatt, J.A.; Toth, C.A.; Kuo, A.N. Needle Depth and Big Bubble Success in Deep Anterior Lamellar Keratoplasty: An Ex Vivo Microscope-Integrated OCT Study. Cornea 2016, 35, 1471–1477. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, W.J.; Musch, D.C.; Jacobs, D.S.; Lee, W.B.; Kaufman, S.C.; Shtein, R.M. Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the american academy of ophthalmology. Ophthalmology 2011, 118, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Sugita, J.; Kondo, J. Deep lamellar keratoplasty with complete removal of pathological stroma for vision improvement. Br. J. Ophthalmol. 1997, 81, 184–188. [Google Scholar] [CrossRef] [PubMed]
- van Dooren, B.T.H.; Mulder, P.G.H.; Nieuwendaal, C.P.; Beekhuis, W.H.; Melles, G.R.J. Endothelial cell density after deep anterior lamellar keratoplasty (Melles technique). Am. J. Ophthalmol. 2004, 137, 397–400. [Google Scholar] [CrossRef] [PubMed]
- Smadja, D.; Colin, J.; Krueger, R.R.; Mello, G.R.; Gallois, A.; Mortemousque, B.; Touboul, D. Outcomes of deep anterior lamellar keratoplasty for keratoconus: Learning curve and advantages of the big bubble technique. Cornea 2012, 31, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Unal, M.; Bilgin, B.; Yucel, I.; Akar, Y.; Apaydin, C. Conversion to deep anterior lamellar keratoplasty (DALK): Learning curve with big-bubble technique. Ophthalmic Surg. Lasers Imaging Off. J. Int. Soc. Imaging Eye 2010, 41, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.; Jensen, P.; Whitcomb, L.; Barnes, A.; Kumar, R.; Stoianovici, D.; Gupta, P.; Wang, Z.; deJuan, E.; Kavoussi, L. A Steady-Hand Robotic System for Microsurgical Augmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI’99, Cambridge, UK, 19–22 September 1999; Taylor, C., Colchester, A., Eds.; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 1999; pp. 1031–1041. [Google Scholar] [CrossRef]
- Mitchell, B.; Koo, J.; Iordachita, I.; Kazanzides, P.; Kapoor, A.; Handa, J.; Hager, G.; Taylor, R. Development and Application of a New Steady-Hand Manipulator for Retinal Surgery. In Proceedings of the 2007 IEEE International Conference on Robotics and Automation, Rome, Italy, 10–14 April 2007; pp. 623–629. [Google Scholar] [CrossRef]
- Meenink, T.H.; Naus, G.J.; Beelen, M.J.; Steinbuch, M.; Rosielle, N.P.; de Smet, M.D. Ex-vivo Experiments with a Microrobotic Surgical System for Vitreo-retinal Surgery. Investig. Ophthalmol. Vis. Sci. 2012, 53, 3789. [Google Scholar]
- Nordlund, M.L.; Marques, D.M.V.; Marques, F.F.; Cionni, R.J.; Osher, R.H. Techniques for managing common complications of cataract surgery. Curr. Opin. Ophthalmol. 2003, 14, 7–19. [Google Scholar] [CrossRef]
- Nasseri, M.A.; Eder, M.; Nair, S.; Dean, E.C.; Maier, M.; Zapp, D.; Lohmann, C.P.; Knoll, A. The introduction of a new robot for assistance in ophthalmic surgery. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; Volume 2013, pp. 5682–5685. [Google Scholar] [CrossRef]
- Yang, S.; MacLachlan, R.A.; Riviere, C.N. Manipulator Design and Operation of a Six-Degree-of-Freedom Handheld Tremor-Canceling Microsurgical Instrument. IEEE/ASME Trans. Mechatron. 2015, 20, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, X.; Song, C.; Kang, J.U. Motion-compensated hand-held common-path Fourier-domain optical coherence tomography probe for image-guided intervention. Biomed. Opt. Express 2012, 3, 3105–3118. [Google Scholar] [CrossRef] [PubMed]
- Draelos, M.; Tang, G.; Keller, B.; Kuo, A.; Hauser, K.; Izatt, J.A. Optical Coherence Tomography Guided Robotic Needle Insertion for Deep Anterior Lamellar Keratoplasty. IEEE Trans. Biomed. Eng. 2020, 67, 2073–2083. [Google Scholar] [CrossRef]
- Guo, S.; Sarfaraz, N.R.; Gensheimer, W.; Krieger, A.; Kang, J.U. Optical Coherence Tomography Guided Robotic Device for Autonomous Needle Insertion in Cornea Transplant Surgery. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 7068–7074. [Google Scholar] [CrossRef]
- Opfermann, J.D.; Barbic, M.; Khrenov, M.; Guo, S.; Sarfaraz, N.R.; Kang, J.U.; Krieger, A. A Novel Wax Based Piezo Actuator for Autonomous Deep Anterior Lamellar Keratoplasty (Piezo-DALK). In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 757–764. [Google Scholar] [CrossRef]
- Bekerman, I.; Gottlieb, P.; Vaiman, M. Variations in eyeball diameters of the healthy adults. J. Ophthalmol. 2014, 2014, 503645. [Google Scholar] [CrossRef]
- Matthews, A.; Hutnik, C.; Hill, K.; Newson, T.; Chan, T.; Campbell, G. Indentation and needle insertion properties of the human eye. Eye 2014, 28, 880–887. [Google Scholar] [CrossRef]
- Chaon, B.; Maltry, A.; Hou, J. Comparison of Central and Peripheral Descemet’s Membrane Thickness in Human Donor Corneas. Investig. Ophthalmol. Vis. Sci. 2016, 57, 5267. [Google Scholar]
- Park, I.; Park, H.S.; Kim, H.K.; Chung, W.K.; Kim, K. Real-time measurement of intraocular pressure variation during automatic intravitreal injections: An ex-vivo experimental study using porcine eyes. PLoS ONE 2021, 16, e0256344. [Google Scholar] [CrossRef]
- ISO 10993-1:2018; Biological Evaluation of Medical Devices. International Organization for Standardization: Geneva, Switzerland, 2018.
- Spanner, K.; Koc, B. Piezoelectric Motors, an Overview. Actuators 2016, 5, 6. [Google Scholar] [CrossRef]
- Guo, S.; Sarfaraz, N.R.; Gensheimer, W.G.; Krieger, A.; Kang, J.U. Demonstration of Optical Coherence Tomography Guided Big Bubble Technique for Deep Anterior Lamellar Keratoplasty (DALK). Sensors 2020, 20, 428. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Kim, D.-H.; Ilev, I.; Kang, J.U. Fiber-optic Fourier-domain common-path OCT. Chin. Opt. Lett. 2008, 6, 899–901. [Google Scholar]
- Lee, S.; Lee, C.; Verkade, R.; Cheon, G.W.; Kang, J.U. Common-path all-fiber optical coherence tomography probe based on high-index elliptical epoxy-lensed fiber. Opt. Eng. 2019, 58, 026116. [Google Scholar] [CrossRef]
- Jonas, J.B.; Holbach, L. Central Corneal Thickness and Thickness of the Lamina Cribrosa in Human Eyes. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1275–1279. [Google Scholar] [CrossRef] [PubMed]
- ISO 230-2:2014; Determination of Accuracy and Repeatability of Positioning of Numerically Controlled Axes. International Organization for Standardization: Geneva, Switzerland, 2014.
- Middleton, S. Porcine ophthalmology. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Gensheimer, W.G.; Kaluna, J.; Opfermann, J.D.; Wang, Y.; Krieger, A.; Kang, J.U. Needle Insertion Force Profile of Rabbit Corneas with Relevance to Deep Anterior Lamellar Keratoplasty (DALK). Investig. Ophthalmol. Vis. Sci. 2023, 64, 4808. [Google Scholar]
- Wang, Y.; Wei, S.; Kang, J.U. Depth-dependent attenuation and backscattering characterization of 59 optical coherence tomography by stationary iterative method. J. Biomed. Opt. 2023, 28, 085002. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Yang, J.; Huang, K.; Lee, Z.; Lee, X. A comparison of biomechanical properties between human and porcine cornea. J. Biomech. 2001, 34, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jablonka, A.-M.; Maierhofer, N.A.; Roodaki, H.; Eslami, A.; Maier, M.; Nasseri, M.A.; Zapp, D. Comparison of Robot-Assisted and Manual Cannula Insertion in Simulated Big-Bubble Deep Anterior Lamellar Keratoplasty. Micromachines 2023, 14, 1261. [Google Scholar] [CrossRef]
- Khaw, P.T.; Shah, P.; Elkington, A.R. Glaucoma—1: Diagnosis. BMJ 2004, 328, 97–99, Erratum in BMJ 2004, 328, 762. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Read, S.A.; Collins, M.J. Intraocular pressure in keratoconus. Acta Ophthalmol. 2011, 89, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Maas, S.A.; Ellis, B.J.; Ateshian, G.A.; Weiss, J.A. FEBio: Finite elements for biomechanics. J. Biomech. Eng. 2012, 134, 011005. [Google Scholar] [CrossRef]
- Faber, C.; Scherfig, E.; Prause, J.U.; Sørensen, K.E. Corneal thickness in pigs measured by ultrasound pachymetry in vivo. Scand. J. Lab. Anim. Sci. 2008, 35, 39–43. [Google Scholar]
- Rüfer, F.; Schröder, A.; Erb, C. White-to-white corneal diameter: Normal values in healthy humans obtained with the Orbscan II topography system. Cornea 2005, 24, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, S.; Opfermann, J.D.; Kaluna, J.; Gensheimer, B.G.; Krieger, A.; Kang, J.U. Common-path optical coherence tomography guided vertical pneumodissection for DALK. In Proceedings of the Optical Fibers and Sensors for Medical Diagnostics, Treatment and Environmental Applications XXIII, San Francisco, CA, USA, 28 January–3 February 2023; SPIE: Bellingham, WA, USA, 2023; Volume 12372, pp. 15–19. [Google Scholar]
- Venkateswaran, N.; Galor, A.; Wang, J.; Karp, C.L. Optical coherence tomography for ocular surface and corneal diseases: A review. Eye Vis. 2018, 5, 13. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jayadev, C.; Dabir, S.; Vinekar, A.; Shah, U.; Vaid, T.; Yadav, N.K. Microscope-integrated optical coherence tomography: A new surgical tool in vitreoretinal surgery. Indian J. Ophthalmol. 2015, 63, 399–403. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Clinical Requirement | Engineering Specification | Theoretical Performance |
---|---|---|
Safe Patient Attachment | Patient Mountable | Commercial Vacuum |
Small Footprint | <40 mm × 40 mm × 40 mm [30] | 24.1 mm × 36.5 mm × 28.4 mm |
Light Weight | <35 g (Equation (1)) | 22 g |
Penetrates Cornea | >0.5 N [31] | 2 N |
High Accuracy | <1 µm [32] | 0.312 μm |
Insertion Speed | <5 mm/s [33] | 10 mm/s |
Needle Compatibility | <20 G | 22–30 G, 0.5–1” Length |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opfermann, J.D.; Wang, Y.; Kaluna, J.; Suzuki, K.; Gensheimer, W.; Krieger, A.; Kang, J.U. Design and Evaluation of an Eye Mountable AutoDALK Robot for Deep Anterior Lamellar Keratoplasty. Micromachines 2024, 15, 788. https://doi.org/10.3390/mi15060788
Opfermann JD, Wang Y, Kaluna J, Suzuki K, Gensheimer W, Krieger A, Kang JU. Design and Evaluation of an Eye Mountable AutoDALK Robot for Deep Anterior Lamellar Keratoplasty. Micromachines. 2024; 15(6):788. https://doi.org/10.3390/mi15060788
Chicago/Turabian StyleOpfermann, Justin D., Yaning Wang, James Kaluna, Kensei Suzuki, William Gensheimer, Axel Krieger, and Jin U. Kang. 2024. "Design and Evaluation of an Eye Mountable AutoDALK Robot for Deep Anterior Lamellar Keratoplasty" Micromachines 15, no. 6: 788. https://doi.org/10.3390/mi15060788
APA StyleOpfermann, J. D., Wang, Y., Kaluna, J., Suzuki, K., Gensheimer, W., Krieger, A., & Kang, J. U. (2024). Design and Evaluation of an Eye Mountable AutoDALK Robot for Deep Anterior Lamellar Keratoplasty. Micromachines, 15(6), 788. https://doi.org/10.3390/mi15060788