Structural Optimization Design of Magnetoelectric Thin-Film Antenna for Bandwidth and Radiation Enhancement
Abstract
:1. Introduction
2. Theory and Simulation of Me Antenna
3. Result and Discussion
- (1)
- The behavior of the ME antenna’s near field is simulated using solid mechanics, electrostatics, and magnetic fields. Specifically, solid mechanics and electrostatics are applied to model the piezoelectric phase, while solid mechanics and magnetic fields are employed for the magnetostrictive phase.
- (2)
- The far field of the ME antenna is simulated using the EM wave module. In the vicinity of the ME antenna, a sphere is employed. Through the principle of surface equivalence, the equivalent magnetic current and equivalent current of the sphere are derived. These equivalent values are then utilized as the new radiation source for calculating the far-field radiation.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ME | magnetoelectric |
EM | electromagnetic |
FDTD | finite difference time-domain |
HBAR | high-overtone bulk-acoustic resonator |
FPA | floating potential structure |
Appendix A
References
- Mosallaei, H.; Sarabandi, K. Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Trans. Antennas Propag. 2004, 52, 2403–2414. [Google Scholar] [CrossRef]
- Skrivervik, A.K.; Zurcher, J.F.; Staub, O.; Mosig, J. PCS antenna design: The challenge of miniaturization. IEEE Antennas Propag. Mag. 2001, 43, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Gianvittorio, J.P.; Rahmat-Samii, Y. Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antennas Propag. Mag. 2002, 44, 20–36. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, Y.E.; Keller, S.; Carman, G.P. Bulk acoustic wave-mediated multiferroic antennas: Architecture and performance bound. IEEE Trans. Antennas Propag. 2015, 63, 3335–3344. [Google Scholar] [CrossRef]
- Domann, J.P.; Carman, G.P. Strain powered antennas. J. Appl. Phys. 2017, 121, 044905. [Google Scholar] [CrossRef]
- Yao, Z.; Tok, R.U.; Itoh, T.; Wang, Y.E. A multiscale unconditionally stable time-domain (MUST) solver unifying electrodynamics and micromagnetics. IEEE Trans. Microw. Theory Tech. 2018, 66, 2683–2696. [Google Scholar] [CrossRef]
- Nan, T.; Lin, H.; Gao, Y.; Matyushov, A.; Yu, G.; Chen, H.; Sun, N.; Wei, S.; Wang, Z.; Li, M.; et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat. Commun. 2017, 8, 296. [Google Scholar] [CrossRef]
- Xu, G.; Xiao, S.; Li, Y.; Wang, B.Z. Modeling of electromagnetic radiation-induced from a magnetostrictive/piezoelectric laminated composite. Phys. Lett. A 2021, 385, 126959. [Google Scholar] [CrossRef]
- Sun, N. RF Magnetoelectric Devices for Communication, Sensing, and Power Electronics. Ph.D. Thesis, Northeastern University, Boston, MA, USA, 2021. [Google Scholar]
- Li, N.; Li, X.; Xu, B.; Zheng, B.; Zhao, P. Design and optimization of a micron-scale magnetoelectric antenna based on acoustic excitation. Micromachines 2022, 13, 1584. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, J.; Wang, Y.; Ye, J. Tuning the Performance of Acoustically Actuated Magnetoelectric Antenna via Magnetic and Mechanical Stimuli. IEEE Trans. Antennas Propag. 2023, 71, 3959–3967. [Google Scholar] [CrossRef]
- Dong, C.; He, Y.; Li, M.; Tu, C.; Chu, Z.; Liang, X.; Chen, H.; Wei, Y.; Zaeimbashi, M.; Wang, X.; et al. A portable very low frequency (VLF) communication system based on acoustically actuated magnetoelectric antennas. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 398–402. [Google Scholar] [CrossRef]
- Zaeimbashi, M.; Lin, H.; Dong, C.; Liang, X.; Nasrollahpour, M.; Chen, H.; Sun, N.; Matyushov, A.; He, Y.; Wang, X.; et al. NanoNeuroRFID: A wireless implantable device based on magnetoelectric antennas. IEEE J. Electromagn. RF Microwaves Med. Biol. 2019, 3, 206–215. [Google Scholar] [CrossRef]
- Zaeimbashi, M.; Nasrollahpour, M.; Khalifa, A.; Romano, A.; Liang, X.; Chen, H.; Sun, N.; Matyushov, A.; Lin, H.; Dong, C.; et al. Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing. Nat. Commun. 2021, 12, 3141. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, A.; Petrov, R.; Khavanova, M.; Tatarenko, A.; Bichurin, M. Modeling of magnetoelectric effect in multiferroic antenna. In Proceedings of the 2019 Photonics & Electromagnetics Research Symposium-Spring (PIERS-Spring), Rome, Italy, 17–20 June 2019; pp. 953–956. [Google Scholar]
- Yun, X.; Lin, W.; Hu, R.; Liu, Y.; Wang, X.; Yu, G.; Zeng, Z.; Zhang, X.; Zhang, B. Bandwidth-enhanced magnetoelectric antenna based on composite bulk acoustic resonators. Appl. Phys. Lett. 2022, 121, 033501. [Google Scholar] [CrossRef]
- Yun, X.; Lin, W.; Hu, R.; Liu, Y.; Wu, D.; Zhang, X.; Zeng, Z.; Zhang, B. Radiation-enhanced acoustically driven magnetoelectric antenna with floating potential architecture. Appl. Phys. Lett. 2022, 121, 203504. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, J.; Ye, J. Enhanced near-field radiation of acoustic-actuated antennas using embedded magnetoelectric composites. Compos. Struct. 2023, 314, 116975. [Google Scholar] [CrossRef]
- Jin, J.; Jing, L.; Zuo, C.; Ma, Z.; Shi, Y.; Yang, X.; Chen, S. Array Study of VLF Thin-Film Magnetoelectric Antenna with a Microbridge Structure. Micromachines 2023, 15, 11. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Liang, X.; Chen, H.; Sun, N.; Lin, H.; Sun, N.X. Gain Enhancement and Ground Plane Immunity of Mechanically Driven Thin-Film Bulk Acoustic Resonator Magnetoelectric Antenna Arrays. Adv. Funct. Mater. 2024, 2403244. [Google Scholar] [CrossRef]
- Dong, B.; Yan, Z.; Zhang, Y.; Han, T.; Zhou, H.; Wang, Y. Analysis of near field mutual coupling in wideband magnetoelectric antennas array. J. Appl. Phys. 2023, 134, 114103. [Google Scholar] [CrossRef]
- Blackburn, J.F.; Vopsaroiu, M.; Cain, M.G. Verified finite element simulation of multiferroic structures: Solutions for conducting and insulating systems. J. Appl. Phys. 2008, 104, 074104. [Google Scholar] [CrossRef]
- Xiao, N.; Wang, Y.; Chen, L.; Wang, G.; Wen, Y.; Li, P. Low-frequency dual-driven magnetoelectric antennas with enhanced transmission efficiency and broad bandwidth. IEEE Antennas Wirel. Propag. Lett. 2022, 22, 34–38. [Google Scholar] [CrossRef]
The Radius (m) | −10 dB Bandwidth (MHz) | Fractional Bandwidth (FBW) |
---|---|---|
0 | 0.2533 | 0.1498% |
10 | 0.3211 | 0.1899% |
50 | 0.5212 | 0.3082% |
80 | 0.3717 | 0.2195% |
140 | 0.3324 | 0.1962% |
200 | 0.2888 | 0.1702% |
260 | 0.1896 | 0.1115% |
320 | 0 | 0% |
Paper | Bandwidth | Resonant Frequency (f0) | Dimension | Gain |
---|---|---|---|---|
Ref. [16] | −3 dB 21 MHz | 800 MHz | 0.49 mm2 | None |
Ref. [9] | −3 dB 42 MHz | 1.575 GHz | 3 mm × 3 mm | −19.4 dBi |
Ref. [23] | −3 dB 725 Hz + 1179 Hz | 36 kHz | 50 mm × 6 mm | None |
Ref. [7] | None | 2.53 GHz | 0.7 mm × 0.8 mm | −18 dBi |
This paper | −10 dB 0.5212 MHz | 170 MHz | 0.5 mm × 0.5 mm | −21.59 dBi |
The radius (m) | 0 | 10 | 50 | 80 | 140 | 200 | 260 | 320 |
Maximum value (V/m) | 1.72 | 1.76 | 1.79 | 1.62 | 1.28 | 1.07 | 0.84 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhao, P.; Wang, G.; Li, N.; Zhang, Y. Structural Optimization Design of Magnetoelectric Thin-Film Antenna for Bandwidth and Radiation Enhancement. Micromachines 2024, 15, 810. https://doi.org/10.3390/mi15070810
Li X, Zhao P, Wang G, Li N, Zhang Y. Structural Optimization Design of Magnetoelectric Thin-Film Antenna for Bandwidth and Radiation Enhancement. Micromachines. 2024; 15(7):810. https://doi.org/10.3390/mi15070810
Chicago/Turabian StyleLi, Xiangyang, Pengchao Zhao, Guangyuan Wang, Na Li, and Yiqun Zhang. 2024. "Structural Optimization Design of Magnetoelectric Thin-Film Antenna for Bandwidth and Radiation Enhancement" Micromachines 15, no. 7: 810. https://doi.org/10.3390/mi15070810
APA StyleLi, X., Zhao, P., Wang, G., Li, N., & Zhang, Y. (2024). Structural Optimization Design of Magnetoelectric Thin-Film Antenna for Bandwidth and Radiation Enhancement. Micromachines, 15(7), 810. https://doi.org/10.3390/mi15070810