Effect of Filling Material Properties on 1-3 Piezoelectric Composite Performance
Abstract
:1. Introduction
2. Simulation Model and Experiment Setup
2.1. Simulation Model
2.2. Improved Dicing and Filling Method
2.3. Experiment Setup
3. Results and Discussion
3.1. Simulation Results
3.2. Effect of Glass Microsphere on Vibration Coupling
3.3. Effect of Glass Microsphere on Impedance Phase Curve
3.4. Effect of Glass Microsphere on Electrical Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Zhou, J.; Bai, J.; Liu, Y. Fabrication and Modeling of Matching System for Air-Coupled Transducer. Micromachines 2022, 13, 781. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X. Analysis of Piezoelectric Effect of Piezoelectric Ceramics. Chem. Eng. Equip. 2017, 6, 40–41. [Google Scholar]
- Zhang, F.; Feng, P.; Wang, T.; Chen, J. Mechanical-electric response characteristics of 1-3 cement based piezoelectric composite under impact loading. Constr. Build. Mater. 2019, 228, 116781. [Google Scholar] [CrossRef]
- Benard, O.P.; Shaalan, N.M.; Koichi, N.; Mahmoud, A.E.; Hassan, M.A. Numerical Modeling of PZT– Piezoelectric Composites with Passive and Active Epoxy Matrix. Key Eng. Mater. 2019, 821, 445–451. [Google Scholar] [CrossRef]
- Qin, H.; Lu, H.; Zhou, J.; Zhang, Y. Effect of thickness on the performance parameters of modified 1-3 piezoelectric composites. Ceram. Int. 2023, 49, 10928–10935. [Google Scholar] [CrossRef]
- Jae Lee, H.; Zhang, S.; Meyer, R.J.; Sherlock, N.P.; Shrout, T.R. Characterization of piezoelectric ceramics and 1-3 composites for high power transducers. Appl. Phys. Lett. 2012, 101, 32902. [Google Scholar] [CrossRef] [PubMed]
- Lusiola, T.; Oberle, S.; Gorjan, L.; Clemens, F. Effect of Epoxy-Ceramic Fibre Interphase Design on Coupling Factor in Low Fibre Volume Content Piezoelectric Composites. Adv. Mater. Sci. Eng. 2018, 2018, 6465783. [Google Scholar] [CrossRef]
- Mi, X.; Qin, L.; Liao, Q.; Wang, L. Electromechanical coupling coefficient and acoustic impedance of 1–1-3 piezoelectric composites. Ceram. Int. 2017, 43, 7374–7377. [Google Scholar] [CrossRef]
- Gururaja, T.R.; Schulze, W.A.; Cross, L.E.; Newnham, R.E. Piezoelectric Composite Materials for Ultrasonic Transducer Applications. Part II: Evaluation of Ultrasonic Medical Applications. IEEE Trans. Sonics Ultrason. 1985, 32, 499–513. [Google Scholar] [CrossRef]
- Liu, X. Study on Structure and Properties of PZT/Epoxy Piezoelectric Composites. Master’s Thesis, Wuhan University of Technology, Wuhan, China, 2005. [Google Scholar]
- Huang, S.; Guo, L.; Liu, Y.; Xu, D.; Cheng, X. Fabrication and properties of 1-3 epoxy modified cement piezoelectric composites. Acta Mater. Compos. Sin. 2009, 26, 133–137. [Google Scholar]
- Li, L.; Zhang, S.; Xu, Z.; Geng, X.; Shrout, T.R. 1-3 ceramic/epoxy composites for high–temperature transducer applications. Phys. Status Solidi (A) 2013, 210, 1888–1891. [Google Scholar] [CrossRef]
- He, C.; Wang, Y.; Lu, Y.; Liu, Y.; Wu, B. Design and Fabrication of Air-Based 1-3 Piezoelectric Composite Transducer for Air-Coupled Ultrasonic Applications. J. Sens. 2016, 2016, 4982616. [Google Scholar] [CrossRef]
- Chao, Z. Research on Three-Phase Piezocomposite and Curved Surface Transducer. Master’s Thesis, Beijing University of Posts and Telecommunications, Beijing, China, 2019. [Google Scholar]
- Wang, J.; Zhong, C.; Hao, S.; Wang, L. Design and Properties Analysis of Novel Modified 1-3 Piezoelectric Composite. Materials 2021, 14, 1749. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, H.; Zeng, T.; Bai, J. Finite Element Simulation of Effects of Piezoelectric Phase Content and Epoxy Property Parameter on Piezoelectric Property of 1-3 TypePiezoelectric Composite. Mater. Mech. Eng. 2021, 45, 99–102. [Google Scholar]
- Wang, B.; Ding, L.; Lin, X.; Liu, H.; Li, J.; Huang, S. Temperature stability of strain performance of piezoelectric fiber composites with different epoxy matrices. Acta Mater. Compos. Sin. 2021, 38, 1817–1824. [Google Scholar]
- Zhou, H.; Xiao, B.; Zhou, L.; Wang, S.; He, X. Development of multilayer brazed diamond grinding wheel for ceramic precision grinding. Diam. Abras. Eng. 2024, 44, 50–56. [Google Scholar]
- Liao, Y.; Zhang, F.; Li, K.; Wu, S. Grinding performance of micro-texured grinding wheel on different ceramic materials. Diam. Abras. Eng. 2022, 42, 290–299. [Google Scholar]
- Liu, Y.; Zhou, Y.; Wang, X.; Zhou, J. Study of dicing mechanism influence on PZT-4H composite performance. Int. J. Adv. Manuf. Technol. 2023, 129, 5089–5100. [Google Scholar] [CrossRef]
- Cheng, D.; Yue, Q.; Zhou, Z.; Liang, R. Simulation of Lateral Resonance Mode of 1-3 Piezo-composite Based on PZFlex. Piezoelectrics Acoustooptics 2022, 44, 357–360+367. [Google Scholar]
- Walter, S.; Nieweglowski, K.; Rebenklau, L.; Wolter, K.J.; Lamek, B.; Schubert, F.; Heuer, H.; Meyendorf, N. Manufacturing and electrical interconnection of piezoelectric 1-3 composite materials for phased array ultrasonic transducers. In Proceedings of the 2008 31st International Spring Seminar on Electronics Technology, Budapest, Hungary, 7–11 May 2008; pp. 255–260. [Google Scholar]
- Qin, L.; Jia, J.; Choi, M.; Uchino, K. Improvement of electromechanical coupling coefficient in shear-mode of piezoelectric ceramics. Ceram. Int. 2019, 45, 1496–1502. [Google Scholar] [CrossRef]
- Zhang, Q. Fabrication and Characterization of 1-3 Type PZT/Epoxy Piezoelectric Composites. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2012. [Google Scholar]
- Wang, C.; Ning, L.; Li, Q.; Li, Y.; Feng, X.; Wang, M.; Liu, X.; Yang, S.; Wu, J.; Li, J.; et al. Sm2O3 and MnO2 codoped PMN-PZT ceramics with both high mechanical quality factor and piezoelectric properties. Ceram. Int. 2023, 49, 21155–21160. [Google Scholar] [CrossRef]
- Wang, H.; Liu, J.; Zhu, H.; Pan, Z. Analysis of Effective Electromechanical Coupling Coefficient of Hollow Ultrasonic Motor Stator. J. Vib. Meas. Diagn. 2022, 42, 1212–1250. [Google Scholar]
- Li, L. Research on 1-3 Series Piezoelectric Composite and Underwater Transducer. Master’s Thesis, Beijing University of Posts and Telecommunications, Beijing, China, 2008. [Google Scholar]
- Lin, P.; Zhu, Y.; Chen, Z.; Fei, C.; Chen, D.; Zhang, S.; Li, D.; Feng, W.; Yang, Y.; Chai, C. Design and fabrication of non-periodic 1-3 composite structure for ultrasonic transducer application. Compos. Struct. 2022, 285, 115249. [Google Scholar] [CrossRef]
- Qin, H.; Lu, H.; Shen, X.; Xin, Z.; Yang, B. Design, preparation and electromechanical characteristics analysis of piezoelectric 1-3-type composites with sandwich epoxy structures. Sens. Actuators A Phys. 2024, 366, 115024. [Google Scholar] [CrossRef]
Component Name | Material | Density (kg/m3) | Elastic Modulus (Pa) | Poisson’s Ratio |
---|---|---|---|---|
Piezoelectric ceramic column | PZT-4 | 7500 | / | / |
Epoxy resin | E51-618 | 1160 | E(T[1/K]) | 0.38 |
Glass microsphere | BR20 | 200 | ||
Air | / | 1.205 | / | / |
Parameter | Value |
---|---|
Wheel speed (r/min) | 2500 |
Feed rate (mm/min) | 5 |
Kerf space (mm) | 2.5 |
Dicing fluid flow (ml/min) | 720 |
Cooling fluid | Water |
Parameter | #1 | #2 | #3 | #4 |
---|---|---|---|---|
Density (kg/m3) | 1129 | 887 | 744.9 | 693.9 |
Young’s modulus (GPa) | 1 | 0.8 | 0.6 | 0.4 |
Poisson ratio | 0.38 | 0.328 | 0.276 | 0.25 |
Glass microsphere ratio (%) | 0 | 6 | 11 | 14 |
Glass Microsphere Models | Average Diameter d (µm) | True Density ρR (kg/m3) | Bulk Density ρB (kg/m3) | Wall Thickness (µm) | Velocity (m/s) |
---|---|---|---|---|---|
BR20 | 100 | 200 | 120 | 0.5–1 | 2280 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhou, Y.; Zhao, Z.; Zhou, J. Effect of Filling Material Properties on 1-3 Piezoelectric Composite Performance. Micromachines 2024, 15, 812. https://doi.org/10.3390/mi15070812
Liu Y, Zhou Y, Zhao Z, Zhou J. Effect of Filling Material Properties on 1-3 Piezoelectric Composite Performance. Micromachines. 2024; 15(7):812. https://doi.org/10.3390/mi15070812
Chicago/Turabian StyleLiu, Yao, Yang Zhou, Zhigang Zhao, and Jinjie Zhou. 2024. "Effect of Filling Material Properties on 1-3 Piezoelectric Composite Performance" Micromachines 15, no. 7: 812. https://doi.org/10.3390/mi15070812
APA StyleLiu, Y., Zhou, Y., Zhao, Z., & Zhou, J. (2024). Effect of Filling Material Properties on 1-3 Piezoelectric Composite Performance. Micromachines, 15(7), 812. https://doi.org/10.3390/mi15070812