Atomic Depth Image Transfer of Large-Area Optical Quartz Materials Based on Pulsed Ion Beam
Abstract
:1. Introduction
2. Pulsed Ion Beam Etching Theory and Pattern Transfer Methods
2.1. Pulsed Ion Beam Etching Theory
2.1.1. Modelling Unit Face Element Etching
2.1.2. Etching Model for Overall Etching Area
2.2. Mask Plate-Based Graphic Transfer Method
3. Experimental Facilities and Methods
4. Results
4.1. Preliminary Analysis of Experimental Results and Data Processing
4.2. Measurements and Calculations of Parameter Indicators in the Processing Area
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
The surface sputtering yield of ion beam (atoms/ion) | |
Surface binding energy per atom (eV) | |
The mass of the incident ion (Da) | |
The atomic mass of the target material (Da) | |
Nuclear-stopping cross section () | |
Nuclear-stopping power based on the Thomas–Fermi potential (eV/Å) | |
Atomic numbers of the incident ions | |
Atomic numbers of the target atoms | |
Normalized energy | |
Incident ion energy (eV) | |
Energy distribution pattern of the incident ions | |
μ | Scattering width of the incident ion energy |
σ | Scattering width parallel to the incidence direction |
The pulsed ion beam’s outgoing energy (eV) | |
Frequency (Hz) | |
Duty cycle | |
Sputtering time (s) | |
Intensity of the ion beam (mA) | |
The current density of the single-aperture beam (mA) | |
The total acceleration voltage (V) | |
The distance between the screen grid and the acceleration grid (mm) | |
The mass of the ions (Da) | |
The charge of the electric charge | |
The electric constant | |
The diameter of the beam aperture (mm) | |
The unit grid cell of the workpiece | |
The proportionality constant | |
The surface binding energy of the workpiece material (eV) | |
p | Constant related to the incident ion |
Function of p | |
Shielding radius (mm) | |
θ | The surface binding energy of the workpiece material (degrees) |
Duty cycle vector | |
Removal height vector | |
The removal height of each unit cell | |
Speed distribution vector | |
Adjustable proportionality parameter | |
Processing time distribution vector | |
Removal function |
References
- Fang, F. Atomic and Close-to-Atomic Scale Manufacturing: Perspectives and Measures. Int. J. Extreme Manuf. 2020, 2, 030201. [Google Scholar] [CrossRef]
- Guan, Y.; Lei, C.; Liang, T.; Bai, Y.; Qi, L.; Wu, X. Study of RIE Reactive Ion Etching of Silicon Nitride. Electron. Meas. Technol. 2021, 44, P107–P112. [Google Scholar]
- Huff, M. Recent Advances in Reactive Ion Etching and Applications of High-Aspect-Ratio Microfabrication. Micromachines 2021, 12, 991. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. The Modeling and Application Research on the Focused Ion Beam Sputtering Process; Southeast University: Dhaka, Bangladesh, 2019. [Google Scholar]
- Li, Y. Research on the Process Model for Focused Ion Beam Sputtering Etching Micro/Nanofabrication. J. Mech. Eng. 2016, 52, 101. [Google Scholar] [CrossRef]
- Ren, Z. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering; Huazhong University of Science & Technology: Wuhan, China, 2019. [Google Scholar]
- Zhou, G.; Tian, Y.; Shi, F.; Song, C.; Tie, G.; Zhou, G.; Xie, L.; Shao, J.; Wu, Z. Low-Energy Pulsed Ion Beam Technology with Ultra-High Material Removal Resolution and Widely Adjustable Removal Efficiency. Micromachines 2021, 12, 1370. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, J.; Chen, C.; Liu, Z. Calculation and Analysis Based on Sigmund’s Theory for Sputtering Yield. Vacuum 2007, 44, 44–47. [Google Scholar]
- Behrisch, R. (Ed.) Sputtering by Particle Bombardment I. In Topics in Applied Physics; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 1981; Volume 47, ISBN 978-3-540-10521-3. [Google Scholar]
- Allen, L.N.; Keim, R.E. An Ion Figuring System For Large Optic Fabrication. In Current Developments in Optical Engineering and Commercial; Fischer, R.E., Pollicove, H.M., Smith, W.J., Eds.; SPIE: Bellingham, WA, USA, 22 December 1989; p. 33. [Google Scholar]
- Hui, Y.; Liu, W.; Ma, Z.; Zhang, J.; Zhou, S. Research on high deterministic removal characteristics of fused quartz using RF focused ion beam source. J. Appl. Opt. 2019, 40, P284–P290. [Google Scholar] [CrossRef]
- Xie, L.; Tian, Y.; Shi, F.; Guo, S.; Zhou, G. Adaptive Processing Strategy of Pulse Ion Beam for Sub-Nanometer Precision Optical Components. J. Mater. Process. Technol. 2024, 327, 118341. [Google Scholar] [CrossRef]
- Xie, L.; Tian, Y.; Shi, F.; Song, C.; Tie, G.; Zhou, G.; Shao, J.; Liu, S. Nonlinear Effects of Pulsed Ion Beam in Ultra-High Resolution Material Removal. Micromachines 2022, 13, 1097. [Google Scholar] [CrossRef]
- Zhou, G. Research on the Key Technology of Optical Element Shape Modification by Pulsed Ion Beam; National University of Defense Technology: Changsha, China, 2021. [Google Scholar]
- Aicher, T.; Schütz, D.; Spindler, M.; Liu, S.; Günthner, W.A.; Vogel-Heuser, B. Automatic Analysis and Adaption of the Interface of Automated Material Flow Systems to Improve Backwards Compatibility. IFAC-Pap. 2017, 50, 1217–1224. [Google Scholar] [CrossRef]
- Geometrical Product Specifications(GPS)—Surface Texture: Profile Method—Surface Roughness Parameters and Their Values; 2009. Available online: https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D7CBA5D3A7E05397BE0A0AB82A (accessed on 9 July 2024).
- Sigmund, P. Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets. Phys. Rev. 1969, 187, 768. [Google Scholar] [CrossRef]
- Mafi, M.; Martin, H.; Cabrerizo, M.; Andrian, J.; Barreto, A.; Adjouadi, M. A Comprehensive Survey on Impulse and Gaussian Denoising Filters for Digital Images. Signal Process 2019, 157, 236–260. [Google Scholar] [CrossRef]
- Abdurrazzaq, A.; Junoh, A.K.; Wan Muhamad, W.Z.A.; Yahya, Z.; Mohd, I. An Overview of Multi-Filters for Eliminating Impulse Noise for Digital Images. TELKOMNIKA Telecommun. Comput. Electron. Control 2020, 18, 385. [Google Scholar] [CrossRef]
- Li, W.; Minev, R.; Dimov, S.; Lalev, G. Patterning of Amorphous and Polycrystalline Ni78B14Si8 with a Focused-Ion-Beam. Appl. Surf. Sci. 2007, 253, 5404–5410. [Google Scholar] [CrossRef]
- Kim, C.-S.; Ahn, S.-H.; Jang, D.-Y. Review: Developments in Micro/Nanoscale Fabrication by Focused Ion Beams. Vacuum 2012, 86, 1014–1035. [Google Scholar] [CrossRef]
- Nellen, P.M.; Callegari, V.; Brönnimann, R. FIB-Milling of Photonic Structures and Sputtering Simulation. Microelectron. Eng. 2006, 83, 1805–1808. [Google Scholar] [CrossRef]
- Sadoh, T.; Eguchi, H.; Kenjo, A.; Miyao, M. Etching Characteristics of SiO2 Irradiated with Focused Ion Beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 206, 478–481. [Google Scholar] [CrossRef]
- Choi, G.; Efremov, A.; Lee, D.-K.; Cho, C.-H.; Kwon, K.-H. On Mechanisms to Control SiO2 Etching Kinetics in Low-Power Reactive-Ion Etching Process Using CF4 + C4F8 + Ar + He Plasma. Vacuum 2023, 216, 112484. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, S.J.; Lee, J.J.; Cho, C.H.; Seong, I.H.; You, S.J. Purgeless Atomic Layer Etching of SiO2. J. Phys. Appl. Phys. 2022, 55, 365203. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value |
---|---|---|---|
Ion type | Ar+ | Pulse duty cycle | 20% |
Screen grid voltage | 800 V | Pulse frequency | 1 Hz |
Acceleration grid voltage | −120 V | Angle of incidence | 90° |
Deceleration grid voltage | 0 V | Grid aperture | 15 mm |
Distance between mask and substrate | 0.5 mm |
Sputtering Time t (s) | Depth of Etching Area “N” (nm) | Depth of Etching Area “U” (nm) | Depth of Etching Area “D” (nm) | Depth of Etching Area “T” (nm) |
22.5 | 2.77 | 2.62 | 2.97 | 2.97 |
37.5 | 7.27 | 6.65 | 4.89 | 6.50 |
45 | 5.75 | 7.68 | 8.33 | 7.12 |
Average Depth of Etched Area (nm) | The Standard Deviation of the Depth of the Etched Area | Average Roughness of Machined Area (nm) | ||
2.83 | 0.17 | 0.33087 | ||
6.33 | 1.01 | 0.57698 | ||
7.22 | 1.10 | 0.43101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, S.; Wen, K.; Xie, L.; Zhou, X.; Tian, Y.; Qiao, S.; Shi, F.; Peng, X. Atomic Depth Image Transfer of Large-Area Optical Quartz Materials Based on Pulsed Ion Beam. Micromachines 2024, 15, 914. https://doi.org/10.3390/mi15070914
Ran S, Wen K, Xie L, Zhou X, Tian Y, Qiao S, Shi F, Peng X. Atomic Depth Image Transfer of Large-Area Optical Quartz Materials Based on Pulsed Ion Beam. Micromachines. 2024; 15(7):914. https://doi.org/10.3390/mi15070914
Chicago/Turabian StyleRan, Shuyang, Kefan Wen, Lingbo Xie, Xingyu Zhou, Ye Tian, Shuo Qiao, Feng Shi, and Xing Peng. 2024. "Atomic Depth Image Transfer of Large-Area Optical Quartz Materials Based on Pulsed Ion Beam" Micromachines 15, no. 7: 914. https://doi.org/10.3390/mi15070914
APA StyleRan, S., Wen, K., Xie, L., Zhou, X., Tian, Y., Qiao, S., Shi, F., & Peng, X. (2024). Atomic Depth Image Transfer of Large-Area Optical Quartz Materials Based on Pulsed Ion Beam. Micromachines, 15(7), 914. https://doi.org/10.3390/mi15070914