Ni3V2O8 Marigold Structures with rGO Coating for Enhanced Supercapacitor Performance
Abstract
:1. Introduction
2. Experimental Section
3. Result and Discussion
3.1. X-ray Diffraction Analysis
3.2. Field Electron Scanning Electron Microscopy (FESEM) Analysis
3.3. XPS Analysis
3.4. Electrochemical Study
3.5. Asymmetric Supercapacitor (ASC)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dubal, D.P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790. [Google Scholar] [CrossRef] [PubMed]
- Lokhande, C.D.; Dubal, D.P.; Joo, O.S. Metal oxide thin film based supercapacitors. Curr. Appl. Phys. 2011, 11, 255–270. [Google Scholar] [CrossRef]
- Sagadevan, S.; Marlinda, A.R.; Johan, M.R.; Umar, A.; Fouad, H.; Alothman, O.Y.; Khaled, U.; Akhtar, M.S.; Shahid, M.M. Reduced graphene/nanostructured cobalt oxide nanocomposite for enhanced electrochemical performance of supercapacitor applications. J. Colloid. Interface Sci. 2019, 558, 68–77. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Zhang, X.; Wang, J.; Shu, H.; Li, S.; He, T.; Lan, C.; Yu, T. Applications of battery/supercapacitor hybrid energy storage systems for electric vehicles using perturbation observer based robust control. J. Power Sources 2020, 448, 227444. [Google Scholar] [CrossRef]
- Husain, A.; Ahmad, S.; Mohammad, F. Electrical conductivity and alcohol sensing studies on polythiophene/tin oxide nanocomposites. J. Sci. Adv. Mater. Devices 2020, 5, 84–94. [Google Scholar] [CrossRef]
- Nasir, F.; Mohammad, M.A. Investigation of Device Dimensions on Electric Double Layer Microsupercapacitor Performance and Operating Mechanism. IEEE Access 2020, 8, 28367–28374. [Google Scholar] [CrossRef]
- Veerakumar, P.; Sangili, A.; Manavalan, S.; Thanasekaran, P.; Lin, K.C. Research Progress on Porous Carbon Supported Metal/Metal Oxide Nanomaterials for Supercapacitor Electrode Applications. Ind. Eng. Chem. Res. 2020, 59, 6347–6374. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, H.; Wu, X.; Wang, L.; Zhang, A.; Xia, T.; Dong, H.; Li, X.; Zhang, L. Progress of electrochemical capacitor electrode materials: A review. Int. J. Hydrogen Energy 2009, 34, 4889–4899. [Google Scholar] [CrossRef]
- Bi, W.; Wang, J.; Jahrman, E.P.; Seidler, G.T.; Gao, G.; Wu, G.; Cao, G. Interface Engineering V2O5 Nanofibers for High-Energy and Durable Supercapacitors. Small 2019, 15, e1901747. [Google Scholar] [CrossRef]
- Fu, M.; Zhuang, Q.; Zhu, Z.; Zhang, Z.; Chen, W.; Liu, Q.; Yu, H. Facile synthesis of V2O5/graphene composites as advanced electrode materials in supercapacitors. J. Alloys Compd. 2021, 862, 158006. [Google Scholar] [CrossRef]
- Tian, M.; Li, R.; Liu, C.; Long, D.; Cao, G. Aqueous Al-Ion Supercapacitor with V2O5 Mesoporous Carbon Electrodes. ACS Appl. Mater. Interfaces 2019, 11, 15573–15580. [Google Scholar] [CrossRef]
- Brisse, A.L.; Stevens, P.; Toussaint, G.; Crosnier, O.; Brousse, T. Ni(OH)2 and NiO based composites: Battery type electrode materials for hybrid supercapacitor devices. Materials 2018, 11, 1178. [Google Scholar] [CrossRef] [PubMed]
- Shown, I.; Ganguly, A.; Chen, L.C.; Chen, K.H. Conducting polymer-based flexible supercapacitor. Energy Sci. Eng. 2015, 3, 2–26. [Google Scholar] [CrossRef]
- Du, X.; Lin, Z.; Wang, X.; Zhang, K.; Hu, H.; Dai, S. Electrode Materials, Structural Design, and Storage Mechanisms in Hybrid Supercapacitors. Molecules 2023, 28, 6432. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Elaiyappillai, E.; Anandaraj, S.; Duvaragan, B.K.; Johnson, P.M. Study on the electrochemical behavior of BiVO4/PANI composite as a high performance supercapacitor material with excellent cyclic stability. J. Electroanal. Chem. 2020, 861, 113972. [Google Scholar] [CrossRef]
- Packiaraj, R.; Venkatesh, K.S.; Devendran, P.; Bahadur, S.A. Nallamuthu, Structural, morphological and electrochemical studies of nanostructured BiVO4 for supercapacitor application. Mater. Sci. Semicond. Process. 2020, 115, 105122. [Google Scholar] [CrossRef]
- Choi, J.; Lim, J.; Kim, D.; Park, S.; Yan, B.; Ko, D.; Cho, Y.; Lee, L.Y.S.; Piao, Y. CoFe Prussian blue analogues on 3D porous N-doped carbon nanosheets boost the intercalation kinetics for a high-performance quasi-solid-state hybrid capacitor. J. Mater. Chem. A 2022, 10, 14501–14512. [Google Scholar] [CrossRef]
- Srivastava, M.; Das, A.K.; Khanra, P.; Uddin, M.E.; Kim, N.H.; Lee, J.H. Characterizations of in situ grown ceria nanoparticles on reduced graphene oxide as a catalyst for the electrooxidation of hydrazine. J. Mater. Chem. A 2013, 1, 9792–9801. [Google Scholar] [CrossRef]
- Zakharova, G.S.; Liu, Y.; Enyashin, A.N.; Yang, X.; Zhou, J.; Jin, W.; Chen, W. Metal cations doped vanadium oxide nanotubes: Synthesis, electronic structure, and gas sensing properties. Sensors Actuators B Chem. 2018, 256, 1021–1029. [Google Scholar] [CrossRef]
- Chen, T.W.; Rajaji, U.; Chen, S.M.; Lou, B.S.; Al-Zaqri, N.; Alsalme, A.; Alharthi, F.A.; Lee, S.Y.; Chang, W.H. A sensitive electrochemical determination of chemotherapy agent using graphitic carbon nitride covered vanadium oxide nanocomposite; sonochemical approach. Ultrason. Sonochem. 2019, 58, 104664. [Google Scholar] [CrossRef]
- Balasubramaniana, K.; Karuppiahb, C.; Alagarsamyc, S.; Mohandossd, S.; Arunachalame, P.; Govindasamyf, C.; Velmurugang, M.; Yangh, C.-C.; Leeb, H.J.; Ramaraj, S.K. Highly sensitive detection of environmental toxic fenitrothion in fruits and water using a porous graphene oxide nanosheets based disposable sensor. Environ. Res. 2024, 259, 118344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Xu, Y.; Li, C.; Chen, W.; Zhu, W.; Wang, L. Staggered nickel–vanadium layered double hydroxide nanosheets on reduced graphene oxide via in-situ growth for enhanced supercapacitor performance. J. Alloys Compd. 2023, 935, 168048. [Google Scholar] [CrossRef]
- Wu, X.; Han, Z.; Zheng, X.; Yao, S.; Yang, X.; Zhai, T. Core-shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 2017, 31, 410–417. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Yan, J.; Li, C.; Chen, X.; Zhu, Y. A facile synthesis of 3D flower-like NiCo2O4@MnO2 composites as an anode material for Li-ion batteries. Appl. Surf. Sci. 2019, 473, 266–274. [Google Scholar] [CrossRef]
- Wang, R.; Xu, C.; Lee, J.M. High performance asymmetric supercapacitors: New NiOOH nanosheet/graphene hydrogels and pure graphene hydrogels. Nano Energy 2016, 19, 210–221. [Google Scholar] [CrossRef]
- Mohamed, S.G.; Hussain, I.; Shim, J.J. One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. Nanoscale 2018, 10, 6620–6628. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; He, H.; Li, Q. Ni–Co–S nanosheets supported by CuCo2O4 nanowires for ultra-high capacitance hybrid supercapacitor electrode. Int. J. Hydrogen Energy 2020, 45, 4784–4792. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, F.; Cheng, J.P.; Zhang, X.B. Binary Nickel-Cobalt Oxides Electrode Materials for High-Performance Supercapacitors: Influence of its Composition and Porous Nature. ACS Appl. Mater. Interfaces 2015, 7, 17630–17640. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X.; Gao, Y.; Gao, D.; Wei, Z.; Wu, H. In-situ synthesis of three-dimensionally flower-like Ni3V2O8@carbon nanotubes composite through self-assembling for high performance asymmetric supercapacitors. J. Power Sources 2020, 455, 227985. [Google Scholar] [CrossRef]
- Maitra, A.; Das, A.K.; Karan, S.K.; Paria, S.; Bera, R.; Khatua, B.B. A Mesoporous High-Performance Supercapacitor Electrode Based on Polypyrrole Wrapped Iron Oxide Decorated Nanostructured Cobalt Vanadium Oxide Hydrate with Enhanced Electrochemical Capacitance. Ind. Eng. Chem. Res. 2017, 56, 2444–2457. [Google Scholar] [CrossRef]
- Sahoo, R.; Roy, A.; Dutta, S.; Ray, C.; Aditya, T.; Pal, A.; Pal, T. Liquor ammonia mediated V(v) insertion in thin Co3O4 sheets for improved pseudocapacitors with high energy density and high specific capacitance value. Chem. Commun. 2015, 51, 15986–15989. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lei, L.; Li, Z.; Huang, L.; Wei, T.; Wang, C.; Wei, X. Surface Defect Modulation with Intercalation Ion Doping Vanadium Oxide to Enhance Zinc Storage Performance. Energy Fuels 2022, 36, 2872–2879. [Google Scholar] [CrossRef]
- Kim, K.H.; Yoshihara, Y.; Abe, Y.; Kawamura, M.; Kiba, T. Preparation of porous zinc oxide-nickel oxide nanocomposites by facile one-pot solution process. Ceram. Int. 2017, 43, 1318–1322. [Google Scholar] [CrossRef]
- Yang, M.; Fu, X.; Zhang, J.; Wang, Z.; Wang, B.; He, L.; Wu, Z.; Cheng, H.; Pan, H.; Lu, Z. Hierarchical Ultrafine Ni3V2O8 Nanoparticles Anchored on rGO as High-Performance Anode Materials for Lithium-Ion Batteries. Energy Technol. 2019, 7, 1800784. [Google Scholar] [CrossRef]
- Yewale, M.A.; Bharadwaj, A.V.S.L.S.; Kadam, R.A.; Shelke, N.T.; Teli, A.M.; Beknalkar, S.A.; Kumar, V.; Alam, M.W.; Shin, D.K. Electrochemical study of CoV2O6 prepared by hydrothermal approach at different molar concentration of vanadium source. Mater. Sci. Eng. B 2024, 307, 117464. [Google Scholar] [CrossRef]
- Liu, T.-C.; Pell, W.G.; Conway, B.E.; Roberson, S.L. Behavior of Molybdenum Nitrides as Materials for Electrochemical Capacitors: Comparison with Ruthenium Oxide. J. Electrochem. Soc. 1998, 145, 1882–1888. [Google Scholar] [CrossRef]
- Patil, A.M.; Moon, S.; Jadhav, A.A.; Hong, J.; Kang, K.; Jun, S.C. Modifying Electronic Structure of Cation-Exchanged Bimetallic Sulfide/Metal Oxide Heterostructure through In Situ Inclusion of Silver (Ag) Nanoparticles for Extrinsic Pseudocapacitor. Adv. Funct. Mater. 2023, 33, 2305264. [Google Scholar] [CrossRef]
- Dhas, S.D.; Thonge, P.N.; Waghmare, S.D.; Kulkarni, G.K.; Shinde, S.K.; Kim, D.Y.; Patil, T.M.; Yewale, M.A.; Moholkar, A.V.; Kim, D. Hierarchical spinel NiMn2O4 nanostructures anchored on 3-D nickel foam as stable and high-performance supercapacitor electrode material. J. Energy Storage 2023, 71, 108168. [Google Scholar] [CrossRef]
- Frenzel, N.; Hartley, J.; Frisch, G. Voltammetric and spectroscopic study of ferrocene and hexacyanoferrate and the suitability of their redox couples as internal standards in ionic liquids. Phys. Chem. Chem. Phys. 2017, 19, 28841–28852. [Google Scholar] [CrossRef]
- Auti, P.S.; Yewale, M.A.; Kadam, R.A.; Kumar, R.; Nakate, U.T.; Teli, A.M.; Jadhavar, A.A.; Kumar, V.; Warule, S.S.; Shin, D.K. Materials Science & Engineering B Hydrothermally synthesized MnCo2O4 nanoparticles for advanced energy storage applications. Mater. Sci. Eng. B 2024, 301, 117198. [Google Scholar] [CrossRef]
- Conway, B.E. Electrochemical supercapacitors. In Advances in Lithium-Ion Batteries; Springer: Boston, MA, USA, 2002; pp. 481–505. [Google Scholar] [CrossRef]
- Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S.E. Li+ ion insertion in TiO2 (anatase). 1. Chronoamperometry on CVD films and nanoporous films. J. Phys. Chem. B 1997, 101, 7710–7716. [Google Scholar] [CrossRef]
- Yewale, M.A.; Teli, A.M.; Beknalkar, S.A.; Kumar, V.; Shin, D.K. Smart Textile Flexible MnCo2O4 Electrodes: Urea Surface Modification for Improved Electrochemical Functionality. Materials 2024, 17, 1866. [Google Scholar] [CrossRef]
- Yewale, M.A.; Kumar, V.; Teli, A.M.; Beknalkar, S.A.; Nakate, U.T.; Shin, D.K. Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method. Micromachines 2024, 15, 414. [Google Scholar] [CrossRef]
- Noh, S.H.; Lee, H.B.; Lee, K.S.; Lee, H.; Han, T.H. Sub-Second Joule-Heated RuO2-Decorated Nitrogen- and Sulfur-Doped Graphene Fibers for Flexible Fiber-type Supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 29867–29877. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, B.; Sun, Y.; Han, P.; Wang, J.; Ding, X.; Zhang, X.; Yang, H. MoO2@Cu@C Composites Prepared by Using Polyoxometalates@Metal-Organic Frameworks as Template for All-Solid-State Flexible Supercapacitor. Electrochim. Acta 2016, 188, 490–498. [Google Scholar] [CrossRef]
- Lakra, R.; Kumar, R.; Sahoo, P.K.; Sharma, D.; Thatoi, D.; Soam, A. Facile synthesis of cobalt oxide and graphene nanosheets nanocomposite for aqueous supercapacitor application. Carbon. Trends 2022, 7, 100144. [Google Scholar] [CrossRef]
- Kedir, C.N.; Salinas-Torres, D.; Quintero-Jaime, A.F.; Benyoucef, A.; Morallon, E. Hydrogels obtained from aniline and piperazine: Synthesis, characterization and their application in hybrid supercapacitors. J. Mol. Struct. 2022, 1248, 131445. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yewale, M.A.; Morankar, P.J.; Kumar, V.; Teli., A.M.; Beknalkar, S.A.; Dhas, S.D.; Shin, D.-K. Ni3V2O8 Marigold Structures with rGO Coating for Enhanced Supercapacitor Performance. Micromachines 2024, 15, 930. https://doi.org/10.3390/mi15070930
Yewale MA, Morankar PJ, Kumar V, Teli. AM, Beknalkar SA, Dhas SD, Shin D-K. Ni3V2O8 Marigold Structures with rGO Coating for Enhanced Supercapacitor Performance. Micromachines. 2024; 15(7):930. https://doi.org/10.3390/mi15070930
Chicago/Turabian StyleYewale, Manesh A., Pritam J. Morankar, Vineet Kumar, Aviraj M. Teli., Sonali A. Beknalkar, Suprimkumar D. Dhas, and Dong-Kil Shin. 2024. "Ni3V2O8 Marigold Structures with rGO Coating for Enhanced Supercapacitor Performance" Micromachines 15, no. 7: 930. https://doi.org/10.3390/mi15070930
APA StyleYewale, M. A., Morankar, P. J., Kumar, V., Teli., A. M., Beknalkar, S. A., Dhas, S. D., & Shin, D. -K. (2024). Ni3V2O8 Marigold Structures with rGO Coating for Enhanced Supercapacitor Performance. Micromachines, 15(7), 930. https://doi.org/10.3390/mi15070930