Comprehensive Review on Research Status and Progress in Precision Grinding and Machining of BK7 Glasses
Abstract
:1. Introduction
2. The Application and Common Machining Methods for BK7
3. Mechanism of BK7 Glass Material Removal
3.1. Common Scratch Devices and BK7 Scratch Experiments
3.1.1. Single-Scratch Experiment on BK7 Glass
3.1.2. Multiple-Scratch Experiments on BK7 Glass
3.2. The Impact of the Scratch Parameters on the Surface of the BK7 Glass
4. Research on Improvement Methods for the Surface Quality of BK7 Glass
4.1. Number of Studies on Different Machining Techniques for BK7 Glass
4.2. Important Methods to Improve the Grinding Quality of BK7 Glass
5. Subsurface Damage (SSD) of BK7 Glass
5.1. Influence of SSD on the Optical Properties of BK7 Glass
5.2. A Predictive Model for SSD of BK7 Glass
6. Ultrasound-Assisted Machining (UAM)
6.1. Ultrasonic Vibration Assisted Grinding (UAG)
6.2. Ultrasonic Vibration-Assisted Polishing (UVAP)
7. Conclusions and Future Research Trends
- The machining technology used for BK7 glass has a significant impact on its performance and application. The main research direction for improving machining technology in the future is continuous innovation and optimization. On the one hand, multiple machining techniques can be combined to improve the machining accuracy and surface quality of BK7 glass, reduce damage and defects during processing, significantly improve the machining accuracy and surface quality of BK7 glass, and ensure high product quality. On the other hand, actively exploring and developing new machining technologies and equipment, such as using artificial intelligence and machine learning to optimize machining parameters and process control and achieving intelligent and automated machining, can not only reduce production costs but also improve the machining efficiency of BK7 glass, meeting the growing demand for high-quality and efficient glass products in the market.
- Microtextured cutting tools play an important role in machining and can improve cutting performance, optimize chip control, enhance tool adaptability, and improve machining accuracy and surface quality. In subsequent research, two aspects can be considered: microtexture design and microtexture machining. For microtexture design, the application of different shapes and directions of microtextures in BK7 glass machining can be explored to achieve specific machining effects and performance requirements. In terms of microtexture machining, composite processing can be considered, combining various machining techniques such as electric discharge machining and laser machining to achieve composite machining of microtexture structures and achieve better machining results.
- Ultrasound-assisted machining, a cutting-edge technology, has broad application prospects. In the future, the interaction mechanism between UAM and grinding parameters can be further studied. By analyzing how these parameters affect each other and their specific effects on the machining process, the optimal combination of machining parameters can be explored. Completing machining tasks in a shorter time while ensuring better surface quality to meet the high-precision and quality requirements of BK7 glass in optical, medical, and other high-end applications is the primary goal. Moreover, by introducing advanced ultrasonic vibration generators and control systems, precise control of ultrasonic vibration parameters can be achieved, thereby further improving the stability and accuracy of machining.
- In future research on BK7 glass machining and manufacturing, the combination of microtextured cutting tools and UAM is undoubtedly an important and promising direction. The design and optimization of microtextured cutting tools can significantly improve chip removal efficiency and lubricant flow performance, ensuring a smoother cutting process. Ultrasonic vibration technology can improve the grinding ability and material removal rate of cutting tools. These two technologies should be combined to achieve efficient machining of BK7 glass.
- To promote the continuous progress of BK7 glass grinding technology, interdisciplinary and interdisciplinary cooperation and communication must be strengthened. By integrating knowledge and technological resources from multiple fields, such as materials science, mechanical engineering, control engineering, artificial intelligence, and environmental science, a comprehensive innovation system can be formed. For example, research achievements in materials science and developing new abrasives and grinding tools suitable for BK7 glass can be combined to overcome the challenges in this field.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Vw | workpiece feed speed |
ap | depth of cut |
d | scratch depth |
Vs | scratch speed |
RUM | rotary ultrasonic machining |
Vf | feed rate |
MRR | material removal rate |
n | rotational speed |
MC | median crack |
h | wheel depth of cut |
hs | actual scratch depth |
CG | conventional grinding |
A | ultrasonic vibration amplitude |
Ra | roughness |
References
- Li, P.; Jin, T.; Xiao, H.; Chen, Z.; Qu, M.; Dai, H.; Chen, S. Topographical characterization and wear behavior of diamond wheel at different processing stages in grinding of N-BK7 optical glass. Tribol. Int. 2020, 151, 106453. [Google Scholar] [CrossRef]
- Huang, C.; Zhou, M.; Zhang, H. A cutting force prediction model in axial ultrasonic vibration end grinding for BK7 optical glass considering protrusion height of abrasive grits. Measurement 2021, 180, 109512. [Google Scholar] [CrossRef]
- Yu, S.; Zhu, J.; Yao, P.; Huang, C. Profile error compensation in precision grinding of ellipsoid optical surface. Chin. J. Aeronaut. 2021, 34, 115–123. [Google Scholar] [CrossRef]
- Pratap, A.; Patra, K.; Dyakonov, A.A. On-machine texturing of PCD micro-tools for dry micro-slot grinding of BK7 glass. Precis Eng. 2019, 55, 491–502. [Google Scholar] [CrossRef]
- Solhtalab, A.; Adibi, H.; Esmaeilzare, A.; Rezaei, S.M. Cup wheel grinding-induced subsurface damage in optical glass BK7: An experimental, theoretical and numerical investigation. Precis Eng. 2019, 57, 162–175. [Google Scholar] [CrossRef]
- Limbach, R.; Winterstein-Beckmann, A.; Dellith, J.; Möncke, D.; Wondraczek, L. Plasticity, crack initiation and defect resistance in alkali-borosilicate glasses: From normal to anomalous behavior. J. Non-Cryst. Solids 2015, 417, 15–27. [Google Scholar] [CrossRef]
- Pal, R.K.; Garg, H.; Sarepaka, R.V.; Karar, V. Experimental investigation of material removal and surface roughness during optical glass polishing. Mater. Manuf. Process. 2016, 31, 1613–1620. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Z.; Yao, P.; Wang, X.; Zhang, Z.; Liu, Y. Envelope grinding of micro-cylinder array lenses using a near arc-profile wheel without on-machine precision truing. J. Mater. Process. Technol. 2021, 289, 116927. [Google Scholar] [CrossRef]
- Maia, J.M.; Marques, P.V. Study on fs-laser machining of optical waveguides and cavities in ULE® glass. J. Opt. 2024, 26, 065802. [Google Scholar] [CrossRef]
- Zhang, L.; Kong, L.; Lei, W.; Li, Q. Review of electrochemical discharge machining technology for insulating hard and brittle materials. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 143. [Google Scholar] [CrossRef]
- Santra, S.; Sarkar, B.R.; Doloi, B.; Bhattacharyya, B. Electrochemical discharge milling on silica glass using vertically upward tool feeding technique. Sādhanā 2024, 49, 128. [Google Scholar] [CrossRef]
- Huo, D. Micro-Cutting: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Liang, Y.; Cui, Z.; Zhang, C.; Meng, F.; Ma, Z.; Li, M.; Yu, T.; Zhao, J. Large size optical glass lens polishing based on ultrasonic vibration. Ceram. Int. 2023, 49, 14377–14388. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Zhang, Y.; Wen, D.; Wang, B.; Shi, Z.; Li, C.; Ding, Y. Research on picosecond laser-assisted polishing of K9 optical glass: Investigation of processing parameters and physical mechanism. Int. J. Adv. Manuf. Technol. 2024, 131, 1897–1917. [Google Scholar] [CrossRef]
- Wei, J.; He, W.; Lin, C.; Zhang, J.; Chen, X.; Xiao, J.; Xu, J. Optimizing process parameters of in-situ laser assisted cutting of glass–ceramic by applying hybrid machine learning models. Adv. Eng. Inform. 2024, 62, 102590. [Google Scholar] [CrossRef]
- Lee, K.H.; Yang, Y.; Ding, L.; Ziebarth, B.; Davis, M.J.; Mauro, J.C. Pressure effects on shear deformation of borosilicate glasses. J. Am. Ceram. Soc. 2021, 104, 3073–3086. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.K. Magnetorheological nanofinishing of BK7 glass for lens manufacturing. Mater. Manuf. Process. 2018, 33, 1188–1196. [Google Scholar] [CrossRef]
- Wang, C.; Wang, D.; Tian, C.; Wang, L.; Rong, Y.; Li, X. Grinding performance evaluation of 3D-printed porous metal-bonded grinding wheel in BK7 glass grinding. Int. J. Adv. Manuf. Technol. 2021, 117, 1445–1457. [Google Scholar] [CrossRef]
- Pal, R.K.; Sharma, R.; Baghel, P.K.; Garg, H.; Karar, V. An approach for quantification of friction and enhancing the process efficiency during polishing of optical glass. J. Mech. Sci. Technol. 2018, 32, 3835–3842. [Google Scholar] [CrossRef]
- Campbell, J.H.; Hawley-Fedder, R.A.; Stolz, C.J.; Menapace, J.A.; Borden, M.R.; Whitman, P.K.; Yu, J.; Runkel, M.J.; Riley, M.O.; Feit, M.D.; et al. NIF optical materials and fabrication technologies: An overview. Opt. Eng. Lawrence Livermore Natl. Lab. II Natl. Ignition Facil. 2004, 5341, 84–101. [Google Scholar]
- Kumar, P.; Kumar, R.; Singh, M.K.; Ahmed, B. A highly sensitive surface plasmon resonance sensor based on black phosphorus in the visible regime. Opt. Quantum Electron. 2023, 55, 1101. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Li, L.Q.; Ren, Y.; Lu, Q.; Wang, L.; Chen, F. Raman spectra study on modifications of BK7 glass induced by 1030-nm and 515-nm femtosecond laser. Results Phys. 2021, 21, 103814. [Google Scholar] [CrossRef]
- Gu, W.; Yao, Z.; Liang, X. Material removal of optical glass BK7 during single and double scratch tests. Wear 2011, 270, 241–246. [Google Scholar] [CrossRef]
- Sassi, I.; Rhouma, M.B.E.H.; Zbidi, M.; Simatupang, J.W. A Highly Sensitive Structure Based on Prism, Silver, and Titanium Dioxide for Biochemical Sensing Applications. Plasmonics 2024. [Google Scholar] [CrossRef]
- Ahlawat, L.; Kishor, K.; Sinha, R.K. Photonic spin Hall effect-based ultra-sensitive refractive index sensor for haemoglobin sensing applications. Opt. Laser Technol. 2024, 170, 110183. [Google Scholar] [CrossRef]
- Houari, F.; Akjouj, A.; Mir, A. Engineering and optimization of the spr device zno/ag/wo3/ni/2d-nanomaterials highly sensitive for biomedical processing and detection. Opt. Mater. 2024, 149, 115019. [Google Scholar]
- Rahaman, M.E.; Hossain, M.B.; Mondal, H.S. Effect of background materials in photonic crystal fiber sensor. Opt. Rev. 2022, 29, 1–6. [Google Scholar] [CrossRef]
- Qi, H.; Shi, L.; Teng, Q.; Tangwarodomnukun, V.; Liu, G.; Li, H.N. Subsurface damage evaluation in the single abrasive scratching of BK7 glass by considering coupling effect of strain rate and temperature. Ceram. Int. 2022, 48, 8661–8670. [Google Scholar] [CrossRef]
- Chen, F.; Wang, D.; Wu, S. Influence of ultrasonic vibration-assisted cutting on ploughing effect in cutting Ti6Al4V. Arch. Civ. Mech. Eng. 2021, 21, 1–19. [Google Scholar] [CrossRef]
- Ding, H.; Zou, B.; Yang, J.; Wang, J.; Huang, C.; Yao, P.; Li, L. Instantaneous milling force prediction and valuation of end milling based on friction angle in orthogonal cutting. Int. J. Adv. Manuf. Technol. 2021, 116, 1341–1355. [Google Scholar] [CrossRef]
- Wang, J.; Zou, B.; Liu, M.; Li, Y.; Ding, H.; Xue, K. Milling force prediction model based on transfer learning and neural network. J. Intell. Manuf. 2021, 32, 947–956. [Google Scholar] [CrossRef]
- Fan, L.; Wang, D. Study on delamination inhibition and chip breakage mechanism in drilling metal laminated materials with double cone drill. J. Manuf. Process. 2021, 64, 81–94. [Google Scholar] [CrossRef]
- Yu, R.; Li, S.; Zou, Z.; Liang, L. Mathematical modeling and experimental study of cutting force for cutting hard and brittle materials in fixed abrasive trepanning drill. Micromachines 2023, 14, 1270. [Google Scholar] [CrossRef] [PubMed]
- Ming, W.; Zhao, Y.; Cao, C.; Ma, J.; Zhang, G.; Du, J.; Li, X.; Li, L. Numerical and experimental study on EDM drilling of Ti-Cu-Zr metallic glass considering energy efficiency. Int. J. Adv. Manuf. Technol. 2023, 128, 3949–3968. [Google Scholar] [CrossRef]
- Mihailov, S.J.; Hnatovsky, C.; Abdukerim, N.; Walker, R.B.; Lu, P.; Xu, Y.; Bao, X.; Ding, H.; De Silva, M.; Coulas, D.; et al. Ultrafast laser processing of optical fibers for sensing applications. Sensors 2021, 21, 1447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, S.; Cui, E.N.; Yu, L.; Wang, Z. Research and Application Progress of Laser-Processing Technology in Diamond Micro-Fabrication. Micromachines 2024, 15, 547. [Google Scholar] [CrossRef]
- Shao, Y.; Cheng, K. Integrated modelling and analysis of micro-cutting mechanics with the precision surface generation in abrasive flow machining. Int. J. Adv. Manuf. Technol. 2019, 105, 4571–4583. [Google Scholar] [CrossRef]
- Wang, J.; Fu, J.; Wang, J.; Du, F.; Liew, P.J.; Shimada, K. Processing capabilities of micro ultrasonic machining for hard and brittle materials: SPH analysis and experimental verification. Precis Eng. 2020, 63, 159–169. [Google Scholar] [CrossRef]
- Hung, J.C.; Su, T.K. Machining Characteristics of Diamond Grit-Coated Tools in Grinding-Aided ECDM. Mater. Manuf. Process. 2023, 38, 1581–1599. [Google Scholar] [CrossRef]
- Ding, S.; Zou, B.; Wang, P.; Huang, C.; Liu, J.; Li, L. Geometric modeling and recycling of 3D printed fiber reinforced thermoplastic composite plain weft knitted structures. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106528. [Google Scholar] [CrossRef]
- Peng, W.; Bin, Z.; Shouling, D.; Lei, L.; Huang, C. Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chin. J. Aeronaut. 2021, 34, 236–246. [Google Scholar]
- Haddad, M.J.; Tehrani, A.F. Material removal rate (MRR) study in the cylindrical wire electrical discharge turning (CWEDT) process. J. Mater. Process. Technol. 2008, 199, 369–378. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, P.; Yan, Y.; Guo, D. Investigation on nanoscale material removal process of BK7 and fused silica glass during chemical-mechanical polishing. Int. J. Appl. Glass Sci. 2021, 12, 198–207. [Google Scholar] [CrossRef]
- Zhang, T.; Guan, C.; Zhang, C.; Xi, W.; Yu, T.; Zhao, J. Predictive modeling and experimental study of generated surface-profile for ultrasonic vibration-assisted polishing of optical glass BK7 in straight feeding process. Ceram. Int. 2021, 47, 19809–19823. [Google Scholar] [CrossRef]
- Brinksmeier, E.; Mutlugünes, Y.; Klocke, F.; Aurich, J.C.; Shore, P.; Ohmori, H. Ultra-precision grinding. CIRP Ann. 2010, 59, 652–671. [Google Scholar] [CrossRef]
- Hervas, I.; Montagne, A.; Van Gorp, A.; Bentoumi, M.; Thuault, A.; Iost, A. Fracture toughness of glasses and hydroxyapatite: A comparative study of 7 methods by using Vickers indenter. Ceram. Int. 2016, 42, 12740–12750. [Google Scholar] [CrossRef]
- Gu, W.; Yao, Z.; Li, H. Investigation of grinding modes in horizontal surface grinding of optical glass BK7. J. Mater. Process. Technol. 2011, 211, 1629–1636. [Google Scholar] [CrossRef]
- Li, C.; Zhang, F.; Meng, B.; Liu, L.; Rao, X. Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics. Ceram. Int. 2017, 43, 2981–2993. [Google Scholar] [CrossRef]
- Shen, J.Y.; Wang, J.Q.; Jiang, B.; Xu, X.P. Study on wear of diamond wheel in ultrasonic vibration-assisted grinding ceramic. Wear 2015, 332, 788–793. [Google Scholar] [CrossRef]
- Ali, A.; Sundaram, M. Drilling of crack free micro holes in glass by chemo-thermal micromachining process. Precis Eng. 2018, 54, 33–38. [Google Scholar] [CrossRef]
- Wang, J.; Fu, C.; Jia, Z. Cutting of hard and brittle insulating materials using spark discharge-assisted diamond wire sawing. J. Mater. Process. Technol. 2018, 252, 225–232. [Google Scholar] [CrossRef]
- Bandyopadhyay, P.; Dey, A.; Roy, S.; Mukhopadhyay, A.K. Effect of load in scratch experiments on soda lime silica glass. J. Non-Cryst. Solids 2012, 358, 1091–1103. [Google Scholar] [CrossRef]
- Moayedi, E.; Sawamura, S.; Hennig, J.; Gnecco, E.; Wondraczek, L. Relaxation of scratch-induced surface deformation in silicate glasses: Role of densification and shear flow in lateral indentation experiments. J. Non-Cryst. Solids 2018, 500, 382–387. [Google Scholar] [CrossRef]
- Wang, W.; Yao, P.; Wang, J.; Huang, C.; Kuriyagawa, T.; Zhu, H.; Zou, B.; Liu, H. Elastic stress field model and micro-crack evolution for isotropic brittle materials during single grit scratching. Ceram. Int. 2017, 43, 10726–10736. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, G.; Zeng, Y.; Xie, G.; Liu, D.; Luo, D.; Wang, J.; Zhang, K. Discrete element simulation of the ultrasonic-assisted scratching process of Al2O3 ceramic under compressive pre-stress. Ceram. Int. 2020, 46, 29090–29100. [Google Scholar] [CrossRef]
- Chen, J.; Fang, Q.; Li, P. Effect of grinding wheel spindle vibration on surface roughness and subsurface damage in brittle material grinding. Int. J. Mach. Tools Manuf. 2015, 91, 12–23. [Google Scholar] [CrossRef]
- Wang, W.; Wan, Z.; Yang, S.; Feng, J.; Dong, L.; Lu, L. Experimental and numerical investigation on the effect of scratch direction on material removal and friction characteristic in BK7 scratching. Materials 2020, 13, 1842. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, W.; Feng, J.; Dong, L.; Yang, S.; Jiang, Z. Effect of scratch direction on densification and crack initiation of optical glass BK7. Ceram. Int. 2020, 46, 16754–16762. [Google Scholar] [CrossRef]
- Qiu, Z.; Liu, C.; Wang, H.; Yang, X.; Fang, F.; Tang, J. Crack propagation and the material removal mechanism of glass–ceramics by the scratch test. J. Mech. Behav. Biomed. Mater. 2016, 64, 75–85. [Google Scholar] [CrossRef]
- Ahn, Y.; Farris, T.N.; Chandrasekar, S. Sliding microindentation fracture of brittle materials: Role of elastic stress fields. Mech. Mater. 1998, 29, 143–152. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, J.; Yan, Y.; Yu, B.; Geng, L.; Sun, T. Experimental and theoretical investigation of crystallographic orientation dependence of nanoscratching of single crystalline copper. PLoS ONE 2015, 10, e0131886. [Google Scholar] [CrossRef]
- Klecka, M.; Subhash, G. Grain size dependence of scratch-induced damage in alumina ceramics. Wear 2008, 265, 612–619. [Google Scholar] [CrossRef]
- Xu, H.H.K.; Padture, N.P.; Jahanmir, S. Effect of microstructure on material-removal mechanisms and damage tolerance in abrasive machining of silicon carbide. J. Am. Ceram. Soc. 1995, 78, 2443–2448. [Google Scholar] [CrossRef]
- Yang, X.; Qiu, Z.; Wang, Y. Stress interaction and crack propagation behavior of glass ceramics under multi-scratches. J. Non-Cryst. Solids 2019, 523, 119600. [Google Scholar] [CrossRef]
- Yang, X.; Qiu, Z.; Li, X. Investigation of scratching sequence influence on material removal mechanism of glass-ceramics by the multiple scratch tests. Ceram. Int. 2019, 45, 861–873. [Google Scholar] [CrossRef]
- Feng, J.; Wan, Z.; Wang, W.; Huang, X.; Ding, X.; Tang, Y. Unique crack behaviors of glass BK7 occurred in successive double scratch under critical load of median crack initiation. J. Eur. Ceram. Soc. 2020, 40, 3279–3290. [Google Scholar] [CrossRef]
- Feng, J.; Wan, Z.; Wang, W.; Huang, X.; Ding, X.; Jiang, Z. Scratch with double-tip tool: Crack behavior during simultaneous double scratch on BK7 glass. J. Eur. Ceram. Soc. 2020, 40, 4202–4216. [Google Scholar] [CrossRef]
- Yu, T.; Li, H.; Wang, W. Experimental investigation on grinding characteristics of optical glass BK7: With special emphasis on the effects of machining parameters. Int. J. Adv. Manuf. Technol. 2016, 82, 1405–1419. [Google Scholar] [CrossRef]
- Hu, W.; Teng, Q.; Hong, T.; Saetang, V.; Qi, H. Stress field modeling of single-abrasive scratching of BK7 glass for surface integrity evaluation. Ceram. Int. 2022, 48, 12819–12828. [Google Scholar] [CrossRef]
- Feng, J.; Huang, X.; Yang, S.; Qing, J.; Tang, P.; Wan, Z. Speed effect on the material behavior in high-speed scratching of BK7 glass. Ceram. Int. 2021, 47, 19978–19988. [Google Scholar] [CrossRef]
- Li, B.; Ni, J.; Yang, J.; Liang, S.Y. Study on high-speed grinding mechanisms for quality and process efficiency. Int. J. Adv. Manuf. Technol. 2014, 70, 813–819. [Google Scholar] [CrossRef]
- Li, P.; Jin, T.; Xiao, H.; Zhiquan, C.; Meina, Q.; Houfu, D.; Siyu, C. Effects of wheel speed on surface/subsurface damage characteristics in grinding of glass-ceramics. Ceram. Int. 2020, 46, 17717–17728. [Google Scholar] [CrossRef]
- Pratap, A.; Patra, K.; Dyakonov, A.A. Experimental analysis of ductile-brittle transitions for parallel and intersecting micro-slot grinding in BK-7 glass. Ceram. Int. 2019, 45, 11013–11026. [Google Scholar] [CrossRef]
- Perveen, A.; San, W.Y.; Rahman, M. Fabrication of different geometry cutting tools and their effect on the vertical micro-grinding of BK7 glass. Int. J. Adv. Manuf. Technol. 2012, 61, 101–115. [Google Scholar] [CrossRef]
- Peng, R.; Huang, X.; Tang, X.; Chen, R.; Hu, Y. Performance of a pressurized internal-cooling slotted grinding wheel system. Int. J. Adv. Manuf. Technol. 2018, 94, 2239–2254. [Google Scholar] [CrossRef]
- Agarwal, S. On the mechanism and mechanics of wheel loading in grinding. J. Manuf. Process. 2019, 41, 36–47. [Google Scholar] [CrossRef]
- Lin, S.; Feng, J.; Zhang, Y.; Yin, Y. Analytical modelling of both parallel and cross grinding with arc-shaped wheel for grinding-pinduced damage and grinding force. Int. J. Adv. Manuf. Technol. 2020, 107, 731–745. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, D.; Shi, Z.; Li, S.; Kang, Z.; Jiang, J.; Zhang, Z. Grinding performance improvement of laser micro-structured silicon nitride ceramics by laser macro-structured diamond wheels. Ceram. Int. 2020, 46, 795–802. [Google Scholar] [CrossRef]
- Liu, W.; Deng, Z.; Shang, Y.; Wan, L. Parametric evaluation and three-dimensional modelling for surface topography of grinding wheel. Int. J. Mech. Sci. 2019, 155, 334–342. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, B. Ultra-precision grinding of optical glasses using mono-layer nickel electroplated coarse-grained diamond wheels. Part 2: Investigation of profile and surface grinding. Precis Eng. 2015, 39, 67–78. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, B. Ultra-precision grinding of optical glasses using mono-layer nickel electroplated coarse-grained diamond wheels. Part 1: ELID assisted precision conditioning of grinding wheels. Precis Eng. 2015, 39, 56–66. [Google Scholar] [CrossRef]
- Wu, M.; Guo, B.; Zhao, Q.; He, P. Precision grinding of a microstructured surface on hard and brittle materials by a microstructured coarse-grained diamond grinding wheel. Ceram. Int. 2018, 44, 8026–8034. [Google Scholar] [CrossRef]
- Manea, H.; Lu, H.; Liu, Q.; Xiao, J.; Yang, K. Micro-Grinding Parameter Control of Hard and Brittle Materials Based on Kinematic Analysis of Material Removal. Mathematics 2024, 12, 1589. [Google Scholar] [CrossRef]
- Lu, H.; Li, C.; Liu, C.; Hua, C.; Hao, J.; Xu, M. Tool-workpiece interaction characteristics in micro-grinding BK7 glass considering nonlinear vibration. Mech. Syst. Signal Process. 2024, 218, 111581. [Google Scholar] [CrossRef]
- Pratap, A.; Patra, K. Effects of electric discharge dressing parameters on polycrystalline diamond micro-tool surface topography and their micro-grinding performances. Int. J. Refract. Met. Hard Mater. 2019, 82, 297–309. [Google Scholar] [CrossRef]
- Pratap, A.; Patra, K. Combined effects of tool surface texturing, cutting parameters and minimum quantity lubrication (MQL) pressure on micro-grinding of BK7 glass. J. Manuf. Process. 2020, 54, 374–392. [Google Scholar] [CrossRef]
- Pratap, A.; Patra, K. Analytical Cutting Force Modeling of Micro-Slot Grinding Considering Tool–Workpiece Interactions on Both Primary and Secondary Tool Surfaces. J. Manuf. Sci. Eng. 2022, 144, 021001. [Google Scholar] [CrossRef]
- Kadivar, M.; Azarhoushang, B.; Krajnik, P. Modeling of micro-grinding forces considering dressing parameters and tool deflection. Precis Eng. 2021, 67, 269–281. [Google Scholar] [CrossRef]
- Pratap, A.; Patra, K. Novel tool design to tailor debris migration and tool wear mechanism in micro-slot grinding. Wear 2022, 494, 204240. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Gao, R.; Zhang, M.; Liu, S.; Hou, J.; Chen, X. Experimental investigation on thermal healing of subsurface damage in borosilicate glass. Ceram. Int. 2021, 47, 17128–17138. [Google Scholar] [CrossRef]
- Yao, Z.; Gu, W.; Li, K. Relationship between surface roughness and subsurface crack depth during grinding of optical glass BK7. J. Mater. Process. Technol. 2012, 212, 969–976. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Wu, Y. Relationship between subsurface damage and surface roughness of ground optical materials. J. Cent. South Univ. Technol. 2007, 14, 546–551. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Wu, Y. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes. J. Mater. Process. Technol. 2008, 205, 34–41. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C.; Feng, P.; Feng, P.; Zhang, J. A model for prediction of subsurface damage in rotary ultrasonic face milling of optical K9 glass. Int. J. Adv. Manuf. Technol. 2016, 83, 347–355. [Google Scholar] [CrossRef]
- Li, H.N.; Yu, T.B.; DaZhu, L.; Wang, W.S. Evaluation of grinding-induced subsurface damage in optical glass BK7. J. Mater. Process. Technol. 2016, 229, 785–794. [Google Scholar] [CrossRef]
- Lv, D.; Chen, M.; Yao, Y. Prediction of subsurface damage depth in rotary ultrasonic machining of glass BK7 with probability statistics. Int. J. Adv. Manuf. Technol. 2020, 107, 1337–1344. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, B. Material embrittlement in high strain-rate loading. Int. J. Extrem. Manuf. 2019, 1, 022003. [Google Scholar] [CrossRef]
- Le Bourhis, E. Glass: Mechanics and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Zakir, S.M.; Zhen, W.; Tao, S. High rate response and dynamic failure of aluminosilicate glass under compression loading. Procedia Struct. Integr. 2018, 13, 1244–1249. [Google Scholar] [CrossRef]
- Li, P.; Chen, S.; Xiao, H. Effects of local strain rate and temperature on the workpiece subsurface damage in grinding of optical glass. Int. J. Mech. Sci. 2020, 182, 105737. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Chen, J.; Fang, Q. Subsurface damage in grinding of brittle materials considering machining parameters and spindle dynamics. Int. J. Adv. Manuf. Technol. 2018, 97, 3723–3734. [Google Scholar] [CrossRef]
- He, J.; Barahimi, V.; Farahnakian, M.; Geng, Y.; Nguyen, Q.; Bach, Q.V. A new monitor model to detect damages in surface and subsurface during cup grinding process of BK7 optical glass: A new optimization model for energy damage. J. Therm. Anal. Calorim. 2021, 144, 1949–1957. [Google Scholar] [CrossRef]
- Lv, D.; Wang, H.; Zhang, W.; Yin, Z. Subsurface damage depth and distribution in rotary ultrasonic machining and conventional grinding of glass BK7. Int. J. Adv. Manuf. Technol. 2016, 86, 2361–2371. [Google Scholar] [CrossRef]
- Jianhua, Z.; Yan, Z.; Shuo, Z.; Fuqiang, T.; Lanshen, G.; Ruizhen, D. Study on effect of ultrasonic vibration on grinding force and surface quality in ultrasonic assisted micro end grinding of silica glass. Shock Vib. 2014, 2014, 418059. [Google Scholar] [CrossRef]
- Wang, Y.; Liang, Z.; Zhao, W.; Wang, X.; Wang, H. Effect of ultrasonic elliptical vibration assistance on the surface layer defect of M-plane sapphire in microcutting. Mater. Des. 2020, 192, 108755. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, L.; Liu, X. Crack Forms Sensitivity-Based Prediction on Subsurface Cracks Depth in Ultrasonic-Vibration-Assisted Grinding of Optical Glasses. Appl. Sci. 2021, 11, 7553. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, C.; Li, H. Experimental investigation of brittle material removal fraction on an optical glass surface during ultrasound-assisted grinding. Int. J. Adv. Manuf. Technol. 2016, 86, 419–426. [Google Scholar] [CrossRef]
- Rabiei, F.; Rahimi, A.R.; Hadad, M.J.; Saberi, A. Experimental evaluation of coolant-lubricant properties of nanofluids in ultrasonic assistant MQL grinding. Int. J. Adv. Manuf. Technol. 2017, 93, 3935–3953. [Google Scholar] [CrossRef]
- Sun, G.; Zhao, L.; Ma, Z.; Zhao, Q. Force prediction model considering material removal mechanism for axial ultrasonic vibration-assisted peripheral grinding of Zerodur. Int. J. Adv. Manuf. Technol. 2018, 98, 2775–2789. [Google Scholar] [CrossRef]
- Gong, H.; Fang, F.Z.; Hu, X.T. Kinematic view of tool life in rotary ultrasonic side milling of hard and brittle materials. Int. J. Mach. Tools Manuf. 2010, 50, 303–307. [Google Scholar] [CrossRef]
- Yang, Z.; Zhu, L.; Lin, B.; Zhang, G.; Ni, C.; Sui, T. The grinding force modeling and experimental study of ZrO2 ceramic materials in ultrasonic vibration assisted grinding. Ceram. Int. 2019, 45, 8873–8889. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, L.; Wang, Y.; Lin, B.; Dong, Y.; Shi, C. Mechanism study on ultrasonic vibration assisted face grinding of hard and brittle materials. J. Manuf. Process. 2020, 50, 520–527. [Google Scholar] [CrossRef]
- Baraheni, M.; Amini, S. Mathematical model to predict cutting force in rotary ultrasonic assisted end grinding of Si3N4 considering both ductile and brittle deformation. Measurement 2020, 156, 107586. [Google Scholar] [CrossRef]
- Ding, K.; Li, Q.; Lei, W.; Zhang, C.; Xu, M.; Wang, X. Design of a defined grain distribution brazed diamond grinding wheel for ultrasonic assisted grinding and experimental verification. Ultrasonics 2022, 118, 106577. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Wang, S.; Zhao, Q.; Ji, X.; Ding, J. Material removal and surface generation mechanisms in rotary ultrasonic vibration–assisted aspheric grinding of glass ceramics. Int. J. Adv. Manuf. Technol. 2024, 130, 3721–3740. [Google Scholar] [CrossRef]
- Xiang, D.; Zhou, Z.; Liu, Z.; Yao, Y.; Guo, Z. Abrasive wear of a single CBN grain in ultrasonic-assisted high-speed grinding. Int. J. Adv. Manuf. Technol. 2018, 98, 67–75. [Google Scholar] [CrossRef]
- Teimouri, R.; Amini, S.; Bami, A.B. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6. Measurement 2018, 116, 129–139. [Google Scholar] [CrossRef]
- Zhao, P.; Zhou, M.; Zhang, Y.; Qiao, G. Surface roughness prediction model in ultrasonic vibration assisted grinding of BK7 opticaglass. J. Cent. South Univ. 2018, 25, 277–286. [Google Scholar] [CrossRef]
- Zhao, P.Y.; Zhou, M.; Liu, X.L.; Jiang, B. Effect to the surface composition in ultrasonic vibration-assisted grinding of BK7 optical glass. Appl. Sci. 2020, 10, 516. [Google Scholar] [CrossRef]
- Lv, D.; Yan, C.; Chen, G.; Liu, D.; Wu, X.; Zhu, Y. Mechanistic prediction for cutting force in rotary ultrasonic machining of BK7 glass based on probability statistics. Ultrasonics 2020, 101, 106006. [Google Scholar] [CrossRef]
- Jiang, C.; Gao, R.; Hao, Y.; Zhu, J.M.; Zhang, Y.B. Investigation of indentation zone on K9 glass under ultrasonic vibration condition using an equivalent mean contact pressure. Exp. Tech. 2019, 43, 657–666. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, X.; Niu, J.; Zhang, C.; Ma, Z.; Xu, P.; Li, M.; Yu, T.; Zhao, J. Predictive and experimental research on the polishing slurry consumption model for ultrasonic vibration-assisted polishing of optical glass BK7. Ceram. Int. 2022, 48, 10048–10058. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, Y.; Zhang, T.; Chen, X.; Zhao, J.; Yu, T. Study on machining BK7 optical glass by ultrasonic vibration-assisted polishing considering the micro-contact state of the abrasive particles with the workpiece. J. Manuf. Process. 2021, 72, 469–482. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Z.; Yu, T.; Chen, H.; Dong, J.; Zhao, J.; Wang, W. Modeling and prediction of generated local surface profile for ultrasonic vibration-assisted polishing of optical glass BK7. J. Mater. Process. Technol. 2021, 289, 116933. [Google Scholar] [CrossRef]
- Pal, R.K.; Kumar, M.; Karar, V. Experimental investigation of polishing process for Schott BK-7 optical glass. Mater. Today Proc. 2022, 57, 734–738. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, C.; Chen, X.; Zhang, T.; Yu, T.; Zhao, J. Modeling and analysis of the material removal rate for ultrasonic vibration–assisted polishing of optical glass BK7. Int. J. Adv. Manuf. Technol. 2022, 118, 627–639. [Google Scholar] [CrossRef]
- Preston, F.W. The theory and design of plate glass polishing machines. J. Soc. Glass Technol. 1927, 11, 214. [Google Scholar]
- Liu, N.; Wu, P.; Niu, F.; Li, X.; Zhu, Y. Trajectory uniformity in fixed abrasive plane lapping of BK7 glass. Int. J. Adv. Manuf. Technol. 2023, 129, 899–908. [Google Scholar] [CrossRef]
- Cui, Z.; Liang, Y.; Chen, X.; Meng, F.; Wang, Z.; Yu, T.; Zhao, J. The ultrasonic vibration–assisted polishing material removal model of tilted cylindrical polishing tool based on BK7 glass. Int. J. Adv. Manuf. Technol. 2023, 125, 2797–2814. [Google Scholar] [CrossRef]
- Liang, Y.; Chen, X.; Zhang, C.; Cui, Z.; Meng, F.; Ma, Z.; Li, M.; Yu, T.; Zhao, J. Oblique ultrasonic vibration-assisted polishing for grating structures of BK7 optical glass. Ceram. Int. 2022, 48, 34355–34363. [Google Scholar] [CrossRef]
- Mounir, H.; Aliouane, T.; Kerdja, L. Technological study of polishing animated by a vibratory movement for BK7 glass. Optik 2021, 247, 167923. [Google Scholar] [CrossRef]
Polishing Conditions | |||
---|---|---|---|
Time (min) | 10, 20, 30, 40, 50, 60 | Frequency | 4.62 kHz |
Polisher | Lp 66, Polycon 100 | Sample | BK7 glass Ø20 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Zhang, Z.; Wei, F.; Li, S.; Liu, M.; Lu, Y. Comprehensive Review on Research Status and Progress in Precision Grinding and Machining of BK7 Glasses. Micromachines 2024, 15, 1021. https://doi.org/10.3390/mi15081021
Yang D, Zhang Z, Wei F, Li S, Liu M, Lu Y. Comprehensive Review on Research Status and Progress in Precision Grinding and Machining of BK7 Glasses. Micromachines. 2024; 15(8):1021. https://doi.org/10.3390/mi15081021
Chicago/Turabian StyleYang, Dayong, Zhiyang Zhang, Furui Wei, Shuping Li, Min Liu, and Yuwei Lu. 2024. "Comprehensive Review on Research Status and Progress in Precision Grinding and Machining of BK7 Glasses" Micromachines 15, no. 8: 1021. https://doi.org/10.3390/mi15081021
APA StyleYang, D., Zhang, Z., Wei, F., Li, S., Liu, M., & Lu, Y. (2024). Comprehensive Review on Research Status and Progress in Precision Grinding and Machining of BK7 Glasses. Micromachines, 15(8), 1021. https://doi.org/10.3390/mi15081021