Optimization of Hot Embossing Condition Using Taguchi Method and Evaluation of Microchannels for Flexible On-Chip Proton-Exchange Membrane Fuel Cell
Abstract
:1. Introduction
2. Equipment Condition and Fabrication Method
2.1. Self-Made Hot Embossing Equipment
2.2. Hot Embossing Method and Conditions
2.3. Material
2.4. Evaluation Method of Fabricated Microchannels
3. Experimental Results
3.1. Factor Design
3.2. Experimental Results and Mean Value Analysis Method
3.3. Optimum Temperature Analysis
3.4. Optimum Force Analysis
3.5. Optimum Time Analysis
3.6. Analysis of Variances (ANOVA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khosravi, S.; Abbas, Q.; Reichmann, K. Electrochemical aspects of interconnect materials in PEMFCs. Int. J. Hydrogen Energy 2021, 46, 35420–35447. [Google Scholar] [CrossRef]
- Yeo, L.P.; Ng, S.H.; Wang, Z.F.; Wang, Z.P.; de Rooij, N.F. Micro-fabrication of polymeric devices using hot roller embossing. Microelectron. Eng. 2009, 86, 933–936. [Google Scholar] [CrossRef]
- Okonkwo, P.C.; Belgacem, I.B.; Emori, W.; Uzoma, P.C. Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. Int. J. Hydrogen Energy 2021, 46, 27956–27973. [Google Scholar] [CrossRef]
- Becker, H.; Heim, U. Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sens. Actuators A Phys. 2000, 83, 130–135. [Google Scholar] [CrossRef]
- Chang, J.H.; Yang, S.Y. Gas pressurized hot embossing for transcription of micro-features. Microsyst. Technol. 2003, 10, 76–80. [Google Scholar] [CrossRef]
- Chen, X.; Fang, Y.; Liu, Q.; He, L.; Zhao, Y.; Huang, T.; Wan, Z.; Wang, X. Temperature and voltage dynamic control of PEMFC Stack using MPC method. Energy Rep. 2022, 8, 798–808. [Google Scholar] [CrossRef]
- Shan, X.C.; Maeda, R.; Murakoshi, Y. Micro Hot Embossing for Replication of Microstructures. Jpn. J. Appl. Phys. 2003, 42, 3859–3862. [Google Scholar] [CrossRef]
- Lin, C.R.; Chen, R.H.; Hung, C. Preventing non-uniform shrinkage in open-die hot embossing of PMMA microstructures. J. Mater. Process. Technol. 2003, 140, 173–178. [Google Scholar] [CrossRef]
- Ning, W.; Lyu, X.; Yuan, Y.; Chen, L.; Tao, W.-Q. Comprehensive evaluation of proton exchange membrane fuel cell-based combined heat and power system with Lithium-ion battery under rule-based strategy. J. Energy Storage 2024, 88, 111620. [Google Scholar] [CrossRef]
- Dong, Z.; Qin, Y.; Zheng, J.; Guo, Q. Numerical investigation of novel block flow channel on mass transport characteristics and performance of PEMFC. Int. J. Hydrogen Energy 2023, 48, 26356–26374. [Google Scholar] [CrossRef]
- Pashaki, M.K.; Mahmoudimehr, J. Performance superiority of an arc-shaped polymer electrolyte membrane fuel cell over a straight one. Int. J. Hydrogen Energy 2023, 48, 3633–13649. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, L.; Li, Y.; Tan, J. Better Electrochemical Performance of PEMFC with a Symmetrical Serpentine Flow Field Bipolar Plate. Int. J. Electrochem. Sci. 2022, 17, 221220. [Google Scholar] [CrossRef]
- Liu, J.; Li, J.; Gong, F.; Yang, G. In-situ observation on the real-time filling deformation of PMMA into micro-channel during hot embossing. Opt. Laser Technol. 2023, 167, 109694. [Google Scholar] [CrossRef]
- Li, J.; Yang, K.; Lian, G.; Gong, F.; Yang, G. A novel hot embossing process for producing high-quality glass micro-pillar arrays. J. Clean. Prod. 2023, 421, 138509. [Google Scholar] [CrossRef]
- Das, A.K.; Hiremath, S.S. Multi-objective optimization of a novel butterfly-wing vortex generator fabricated in a rectangular microchannel based on CFD and NSGA-II genetic algorithm. Appl. Therm. Eng. 2023, 234, 121187. [Google Scholar] [CrossRef]
- Gao, C.; Lan, X.; He, Z.; Xin, G.; Wang, X.; Xin, Q. Temperature uniformity analysis and multi-objective optimization of a small-scale variable density alternating obliquely truncated microchannel. Therm. Sci. Eng. Prog. 2023, 38, 101652. [Google Scholar] [CrossRef]
- Xu, Z.; Qiu, D.; Yi, P.; Peng, L.; Lai, X. Towards mass applications: A review on the challenges and developments in metallic bipolar plates for PEMFC. Prog. Nat. Sci. Mater. Int. 2020, 30, 815–824. [Google Scholar] [CrossRef]
- Chen, J.; Ou, Z.; Chen, H.; Song, S.; Wang, K.; Wang, Y. Recent developments of nanocarbon based supports for PEMFCs electrocatalysts. Chin. J. Catal. 2021, 42, 1297–1326. [Google Scholar] [CrossRef]
- Moreno, N.G.; Molina, M.C.; Gervasio, D.; Robles, J.F.P. Approaches to polymer electrolyte membrane fuel cells (PEMFCs) and their cost. Renew. Sustain. Energy Rev. 2015, 52, 897–906. [Google Scholar] [CrossRef]
- Jin, J.; Hu, M.; Zhao, X. Investigation of incorporating oxygen into TiN coating to resist high potential effects on PEMFC bipolar plates in vehicle applications. Int. J. Hydrogen Energy 2020, 45, 23310–23326. [Google Scholar] [CrossRef]
- Tominaka, S.; Nishizeko, H.; Mizuno, J.; Osaka, T. Bendable fuel cells: On-chip fuel cell on a flexible polymer substrate. Energy Environ. Sci. 2009, 2, 1074–1077. [Google Scholar] [CrossRef]
- Tominaka, S.; Ohta, S.; Osaka, T.; Alkire, R. Prospects of on-chip fuel cell performance: Improvement based on numerical sim-ulation. Energy Environ. Sci. 2011, 162–171, 1754–5692. [Google Scholar] [CrossRef]
- Wang, Z.; Nagao, Y. Effects of Nafion impregnation using inkjet printing for membrane electrode assemblies in polymer electrolyte membrane fuel cells. Electrochim. Acta 2014, 129, 343–347. [Google Scholar] [CrossRef]
- Chang, C.Y.; Yang, S.Y.; Sheh, J.L. A roller embossing process for rapid fabrication of microlens arrays on glass substrates. Microsyst. Technol. 2006, 12, 754–759. [Google Scholar] [CrossRef]
- Liu, S.J.; Dung, Y.T. Hot embossing precise structure onto plastic plates by ultrasonic vibration. Polym. Eng. Sci. 2005, 45, 915–925. [Google Scholar] [CrossRef]
- Bae, I.; Kim, B.; Kim, D.-Y.; Kim, H.; Oh, K.-H. In-plane 2-D patterning of microporous layer by inkjet printing for water management of polymer electrolyte fuel cell. Renew. Energy 2020, 146, 960–967. [Google Scholar] [CrossRef]
- Mekaru, H.; Nakamura, O.; Maruyama, O.; Maeda, R.; Hattori, T. Development of precision transfer technology of atmospheric hot embossing by ultrasonic vibration. Microsyst. Technol. 2007, 13, 385–391. [Google Scholar] [CrossRef]
- Henann, D.L.; Srivastava, V.; Taylor, H.K.; Hale, M.R.; Hardt, D.E.; Anand, L. Metallic glasses: Viable tool materials for the production of surface microstructures in amorphous polymers by micro-hot-embossing. J. Micromechanics Microengineering 2009, 19, 115030. [Google Scholar] [CrossRef]
- Toosi, S.F.; Moradi, S.; Ebrahimi, M.; Hatzikiriakos, S.G. Microfabrication of polymeric surfaces with extreme wettability using hot embossing. Appl. Surf. Sci. 2016, 378, 426–434. [Google Scholar] [CrossRef]
- Deshmukh, S.S.; Goswami, A. Hot Embossing of polymers—A review. Mater. Today Proc. 2020, 26, 405–414. [Google Scholar] [CrossRef]
- Rezem, M.; Günther, A.; Rahlves, M.; Roth, B.; Reithmeier, E. Hot Embossing of Polymer Optical Wave-guides for Sensing Applications. Procedia Technol. 2014, 15, 514–520. [Google Scholar] [CrossRef]
- Hsiang, H.-I.; Chen, C.-C.; Kuo, W.-C. Micro-channel formation on NiCuZn ferrite green sheets prepared by hot embossing. Ceram. Int. 2017, 43, 13853–13859. [Google Scholar] [CrossRef]
- Feng, S.; Kamat, A.M.; Pei, Y. Design and fabrication of conformal cooling channels in molds: Review and progress updates. Int. J. Heat Mass Transf. 2021, 171, 121082. [Google Scholar] [CrossRef]
- Rabhi, F.; Cheng, G.; Barriere, T.; Hocine, N.A. Influence of elastic-viscoplastic behaviour on the filling efficiency of amorphous thermoplastic polymer during the micro hot embossing process. J. Manuf. Process. 2020, 59, 487–499. [Google Scholar] [CrossRef]
- Xu, J.; Shi, L.; Wang, C.; Shan, D.; Guo, B. Micro hot embossing of micro-array channels in ultrafine-grained pure aluminum using a silicon die. J. Mater. Process. Technol. 2015, 225, 375–384. [Google Scholar] [CrossRef]
- Kricka, L.J.; Fortina, P.; Panaro, N.J.; Wilding, P.; Alonso-Amigo, G.; Becker, H. Fabrication of plastic microchips by hot embossing. Lab Chip 2002, 2, 1–4. [Google Scholar] [CrossRef]
- Lee, G.-B.; Chen, S.-H.; Huang, G.-R.; Sung, W.-C.; Lin, Y.-H. Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection. Sens. Actuators B Chem. 2001, 75, 142–148. [Google Scholar] [CrossRef]
- Ng, S.H.; Wang, Z.F.; Tjeung, R.T.; De Rooij, N.F. Development of a multi-layer microelectrofluidic platform. Microsyst. Technol. 2007, 13, 1509–1515. [Google Scholar] [CrossRef]
- Li, J.; Chen, D.; Chen, G. Low-Temperature Thermal Bonding of PMMA Microfluidic Chips. Anal. Lett. 2005, 38, 1127–1136. [Google Scholar] [CrossRef]
- Shayestefar, M.; Mashreghi, A.; Hasani, S.; Rezvan, M.T. Optimization of the structural and magnetic properties of MnFe2O4 doped by Zn and Dy using Taguchi method. J. Magn. Magn. Mater. 2022, 541, 168390. [Google Scholar] [CrossRef]
- Darbari, A.M.; Alavi, M.A.; Saleh, S.R.; Nejati, V. Sensitivity analysis of nanofluid flow over different flat tubes confined between two parallel plates using Taguchi method and statistical analysis of variance. Int. J. Therm. Sci. 2022, 173, 107428. [Google Scholar] [CrossRef]
- Kocatürk, F.; Tanrıkulu, B.; Doğan, S.; Kılıçaslan, C.; Yurtdaş, S.; İnce, U. Optimization of trimming process in cold forging of steel bolts by Taguchi method. Int. J. Press. Vessel. Pip. 2021, 194, 104503. [Google Scholar] [CrossRef]
- Yadav, K.K.; Dasgupta, K.; Singh, D.K.; Varshney, L.; Singh, H. Dysprosium sorption by polymeric composite bead: Robust parametric optimization using Taguchi method. J. Chromatogr. A 2015, 1384, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Macías, H.A.; Yate, L.; Coy, E.; Aperador, W.; Olaya, J.J. Insights and optimization of the structural and mechanical properties of TiWSiN coatings using the Taguchi method. Appl. Surf. Sci. 2021, 558, 149877. [Google Scholar] [CrossRef]
- Hubeatir, K.A. Laser transmission welding of PMMA using IR semiconductor laser complemented by the Taguchi method and grey relational analysis. Mater. Today Proc. 2020, 20, 466–473. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Zhao, Z.; Baleta, J.; Sundén, B. Effect and optimization of backward hole parameters on film cooling performance by Taguchi method. Energy Convers. Manag. 2020, 214, 112809. [Google Scholar] [CrossRef]
Polymer Substrate Used | Configuration of the HE Apparatus for Manufacturing | Functional Parameters | Response Variable | References |
---|---|---|---|---|
PMMA | Traditional-HE | Te,Pe | Bonding quality | [37] |
PMMA | Traditional-HE | Te,Pe,te | Relative standard deviation in microchannel width and depth | [38] |
PMMA | Traditional-HE | Te,Load (kg),te | Microchannel width and depth | [39] |
PMMA | Traditional-HE | Te,Force (N),te | Bonding quality | [40] |
Levels | Factors | ||
---|---|---|---|
Embossing Temperature (°C) | Embossing Force (kg) | Embossing Time (min) | |
1 | 100 | 100 | 1 |
2 | 110 | 200 | 3 |
3 | 120 | 300 | 5 |
4 | 130 | 400 | 10 |
5 | 140 | 500 | 15 |
Temperature (°C) | Force (kg) | Time (min) | Ratio (%) | ||||
---|---|---|---|---|---|---|---|
Bottom Width | Top Width | Area | Height | Average | |||
100 | 100 | 1 | 98.10 | 99.42 | 82.01 | 83.39 | 90.73 |
200 | 3 | 99.44 | 97.80 | 90.27 | 90.77 | 94.57 | |
300 | 5 | 98.10 | 97.96 | 91.89 | 92.07 | 95.00 | |
400 | 10 | 98.09 | 95.62 | 93.20 | 94.60 | 95.38 | |
500 | 15 | 98.77 | 97.69 | 94.97 | 99.09 | 97.63 | |
110 | 100 | 3 | 99.34 | 94.11 | 87.48 | 96.34 | 94.32 |
200 | 5 | 98.10 | 97.29 | 96.66 | 96.60 | 97.16 | |
300 | 10 | 98.21 | 95.38 | 94.14 | 96.38 | 96.03 | |
400 | 15 | 98.66 | 98.40 | 96.77 | 99.72 | 98.39 | |
500 | 1 | 97.77 | 99.56 | 90.04 | 91.86 | 94.81 | |
120 | 100 | 5 | 99.45 | 94.14 | 90.39 | 94.30 | 94.57 |
200 | 10 | 98.21 | 98.79 | 92.36 | 97.79 | 96.79 | |
300 | 15 | 99.56 | 99.91 | 99.45 | 100.70 | 99.91 | |
400 | 1 | 98.32 | 99.99 | 97.47 | 99.00 | 98.70 | |
500 | 3 | 98.55 | 98.97 | 94.37 | 98.83 | 97.68 | |
130 | 100 | 10 | 98.44 | 98.05 | 95.89 | 97.75 | 97.53 |
200 | 15 | 98.21 | 99.56 | 96.00 | 98.84 | 98.15 | |
300 | 1 | 99.01 | 98.71 | 96.22 | 94.15 | 97.02 | |
400 | 3 | 99.56 | 99.73 | 98.69 | 99.75 | 99.43 | |
500 | 5 | 98.21 | 100.00 | 96.70 | 100.49 | 98.85 | |
140 | 100 | 15 | 98.77 | 97.79 | 96.27 | 99.55 | 98.10 |
200 | 1 | 98.44 | 99.05 | 95.96 | 99.57 | 98.25 | |
300 | 3 | 98.32 | 99.82 | 95.26 | 99.57 | 98.24 | |
400 | 5 | 98.56 | 98.71 | 96.50 | 99.31 | 98.27 | |
500 | 10 | 99.22 | 98.45 | 95.76 | 98.11 | 97.89 |
Temperature | 94.66 | 96.14 | 97.53 | 98.20 | 98.15 | 3.54 |
Force | 95.05 | 96.99 | 97.24 | 98.03 | 97.37 | 2.98 |
Time | 95.90 | 96.85 | 96.77 | 96.72 | 98.43 | 2.53 |
Factor | DOF | Sum of Square (SOS) | Mean Square (MS) | F-Ratio (F) | Percent (%) |
---|---|---|---|---|---|
Temperature (°C) | 4 | 184.76 | 46.19 | 5.28 | 47.51 |
Force (kg) | 4 | 100.75 | 25.19 | 2.89 | 26.00 |
Time (min) | 4 | 67.74 | 16.94 | 1.95 | 17.50 |
Error | 87 | 758.47 | 8.72 | / | 8.99 |
Total | 99 | 1111.72 | 97.02 | / | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Gao, H.; Wu, Z.; Xiao, H.; Xia, C.; Xia, Y.; Wang, Z. Optimization of Hot Embossing Condition Using Taguchi Method and Evaluation of Microchannels for Flexible On-Chip Proton-Exchange Membrane Fuel Cell. Micromachines 2024, 15, 1033. https://doi.org/10.3390/mi15081033
Huang Y, Gao H, Wu Z, Xiao H, Xia C, Xia Y, Wang Z. Optimization of Hot Embossing Condition Using Taguchi Method and Evaluation of Microchannels for Flexible On-Chip Proton-Exchange Membrane Fuel Cell. Micromachines. 2024; 15(8):1033. https://doi.org/10.3390/mi15081033
Chicago/Turabian StyleHuang, Yubo, Han Gao, Zhiheng Wu, Hongyang Xiao, Cao Xia, Yuanlin Xia, and Zhuqing Wang. 2024. "Optimization of Hot Embossing Condition Using Taguchi Method and Evaluation of Microchannels for Flexible On-Chip Proton-Exchange Membrane Fuel Cell" Micromachines 15, no. 8: 1033. https://doi.org/10.3390/mi15081033
APA StyleHuang, Y., Gao, H., Wu, Z., Xiao, H., Xia, C., Xia, Y., & Wang, Z. (2024). Optimization of Hot Embossing Condition Using Taguchi Method and Evaluation of Microchannels for Flexible On-Chip Proton-Exchange Membrane Fuel Cell. Micromachines, 15(8), 1033. https://doi.org/10.3390/mi15081033