Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Computational Modeling of Micro- and Nanoparticle Separation Dynamics
2.3. Solvers and Computational Simulation
2.4. Manufacture
2.5. Synthesis of Micro- and Nanoparticles of Magnetite
2.5.1. Silanization and Labeling of the Magnetic Nanoparticles (MNPs)
Silanization Process
Rhodamine B Labeling
Purification Process
2.5.2. Synthesis of Blue Carbon Dots
2.6. Experimental Separation Tests
2.6.1. Nanoparticle Separation
2.6.2. Microparticle Separation
3. Results and Discussion
3.1. Nanoparticle Separation
3.2. Microparticle Separation
3.3. Microparticle Sedimentation in Microchannels
3.4. Strengths, Weaknesses, Opportunities, and Threats (SWOT)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bolanos-Barbosa, A.D.; Rodríguez, C.F.; Acuña, O.L.; Cruz, J.C.; Reyes, L.H. The Impact of Yeast Encapsulation in Wort Fermentation and Beer Flavor Profile. Polymers 2023, 15, 1742. [Google Scholar] [CrossRef] [PubMed]
- Kállai-Szabó, N.; Farkas, D.; Lengyel, M.; Basa, B.; Fleck, C.; Antal, I. Microparticles and Multi-Unit Systems for Advanced Drug Delivery. Eur. J. Pharm. Sci. 2024, 194, 106704. [Google Scholar] [CrossRef] [PubMed]
- Colman, S.L.; Salcedo, M.F.; Iglesias, M.J.; Alvarez, V.A.; Fiol, D.F.; Casalongué, C.A.; Foresi, N.P. Chitosan Microparticles Mitigate Nitrogen Deficiency in Tomato Plants. Plant Physiol. Biochem. 2024, 212, 108728. [Google Scholar] [CrossRef] [PubMed]
- Mehraji, S.; DeVoe, D.L. Microfluidic Synthesis of Lipid-Based Nanoparticles for Drug Delivery: Recent Advances and Opportunities. Lab. Chip 2024, 24, 1154–1174. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Sun, Y.; Li, L.; Wang, X.; Zhao, M.; Dai, C. Long Carbon Chain-Modified Carbon Nanoparticles for Oil Displacement in Harsh-Condition Reservoirs. J. Mol. Liq. 2024, 406, 125039. [Google Scholar] [CrossRef]
- Giacon, N.; Lo Cascio, E.; Pennacchietti, V.; De Maio, F.; Santarelli, G.; Sibilia, D.; Tiberio, F.; Sanguinetti, M.; Lattanzi, W.; Toto, A.; et al. PDZ2-Conjugated-PLGA Nanoparticles Are Tiny Heroes in the Battle against SARS-CoV-2. Sci. Rep. 2024, 14, 13059. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.R.; Rizvi, F.; Everton, E.; Adeagbo, A.; Wu, S.; Tam, Y.; Muramatsu, H.; Pardi, N.; Weissman, D.; Gouon-Evans, V. Transient Growth Factor Expression via MRNA in Lipid Nanoparticles Promotes Hepatocyte Cell Therapy in Mice. Nat. Commun. 2024, 15, 5010. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Soto, M.A.; Riveros-Cortés, A.; Orjuela-Garzón, I.C.; Fernández-Calderón, I.M.; Rodríguez, C.F.; Vargas, N.S.; Ostos, C.; Camargo, C.M.; Cruz, J.C.; Kim, S.; et al. Redefining Vascular Repair: Revealing Cellular Responses on PEUU—Gelatin Electrospun Vascular Grafts for Endothelialization and Immune Responses on In Vitro Models. Front. Bioeng. Biotechnol. 2024, 12, 1410863. [Google Scholar] [CrossRef]
- Omidian, H.; Gill, E.J.; Cubeddu, L.X. Lipid Nanoparticles in Lung Cancer Therapy. Pharmaceutics 2024, 16, 644. [Google Scholar] [CrossRef]
- More, S.D.; Wadhokar, A.S.; Bedjawalge, R.S. A Review on Solid Lipid Nanoparticles as Nano Drug Delivery Transporters. Curr. Nanosci. 2024, 20, 644–670. [Google Scholar] [CrossRef]
- Kaya, S.; Solak, E.K.; Doğan, S.Y.; Demirkaya, A.; Celep, A.G.S. Designing of Polymeric Nanoparticles for Enhanced Breast Cancer Therapy: Combining Paclitaxel, Boric Acid and Tannic Acid for Controlled Drug Delivery. ChemistrySelect 2024, 9, e202304672. [Google Scholar] [CrossRef]
- Guidi, L.; Cascone, M.G.; Rosellini, E. Light-Responsive Polymeric Nanoparticles for Retinal Drug Delivery: Design Cues, Challenges and Future Perspectives. Heliyon 2024, 10, e26616. [Google Scholar] [CrossRef]
- Bukhari, R. Introduction to Hybrid Nanomaterial; IGI Global: Hershey, PA, USA, 2024; pp. 183–194. [Google Scholar]
- Kalia, S.; Haldorai, Y. (Eds.) Organic-Inorganic Hybrid Nanomaterials; Springer International Publishing: Cham, Switzerland, 2015; Volume 267, ISBN 978-3-319-13592-2. [Google Scholar]
- Shi, B.; Hu, W.; Li, S.; Xia, Z.; Lü, C. Perovskite Photoinitiated RAFT-Mediated Polymerization-Induced Self-Assembly for Organic–Inorganic Hybrid Nanomaterials. Inorg. Chem. Front. 2024, 11, 2471–2478. [Google Scholar] [CrossRef]
- Alshammari, B.H.; Lashin, M.M.A.; Mahmood, M.A.; Al-Mubaddel, F.S.; Ilyas, N.; Rahman, N.; Sohail, M.; Khan, A.; Abdullaev, S.S.; Khan, R. Organic and Inorganic Nanomaterials: Fabrication, Properties and Applications. RSC Adv. 2023, 13, 13735–13785. [Google Scholar] [CrossRef]
- Stahl, M.A.; Lüdtke, F.L.; Grimaldi, R.; Gigante, M.L.; Ribeiro, A.P.B. Characterization and Stability of Solid Lipid Nanoparticles Produced from Different Fully Hydrogenated Oils. Food Res. Int. 2024, 176, 113821. [Google Scholar] [CrossRef] [PubMed]
- Arabestani, M.R.; Bigham, A.; Kamarehei, F.; Dini, M.; Gorjikhah, F.; Shariati, A.; Hosseini, S.M. Solid Lipid Nanoparticles and Their Application in the Treatment of Bacterial Infectious Diseases. Biomed. Pharmacother. 2024, 174, 116433. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Lee, D.; Dalle Ore, L.C.; Kwak, S.; Kang, L.; Kim, H.K.; Malmstadt, N.; Kim, S.M.; Jeon, T.-J. Photoactivable Liposomes for Controlled Delivery: Recent Progress and Design Considerations. Coord. Chem. Rev. 2024, 501, 215567. [Google Scholar] [CrossRef]
- Rudzińska, M.; Grygier, A.; Knight, G.; Kmiecik, D. Liposomes as Carriers of Bioactive Compounds in Human Nutrition. Foods 2024, 13, 1814. [Google Scholar] [CrossRef]
- Shelonchik, O.; Lemcoff, N.; Shimoni, R.; Biswas, A.; Yehezkel, E.; Yesodi, D.; Hod, I.; Weizmann, Y. Light-Induced MOF Synthesis Enabling Composite Photothermal Materials. Nat. Commun. 2024, 15, 1154. [Google Scholar] [CrossRef]
- Lalebeigi, F.; Kashtiaray, A.; Aghamirza Moghim Aliabadi, H.; Moghadaskhou, F.; Pajoum, Z.; Nokandeh, S.M.; Mahdavi, M.; Eivazzadeh-Keihan, R.; Maleki, A. Agar-Tragacanth/Silk Fibroin Hydrogel Containing Zn-Based MOF as a Novel Nanobiocomposite with Biological Activity. Sci. Rep. 2024, 14, 10508. [Google Scholar] [CrossRef]
- Ansari, K.; Ahmad, R.; Tanweer, M.S.; Azam, I. Magnetic Iron Oxide Nanoparticles as a Tool for the Advancement of Biomedical and Environmental Application: A Review. Biomed. Mater. Devices 2023, 2, 139–157. [Google Scholar] [CrossRef]
- Meng, Y.Q.; Shi, Y.N.; Zhu, Y.P.; Liu, Y.Q.; Gu, L.W.; Liu, D.D.; Ma, A.; Xia, F.; Guo, Q.Y.; Xu, C.C.; et al. Recent Trends in Preparation and Biomedical Applications of Iron Oxide Nanoparticles. J. Nanobiotechnol. 2024, 22, 24. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Lu, Y.; Lei, Z.; Bao, H.; Zhang, M.; Wang, Z.; Guan, C.; Tang, B.; Liu, Z.; Wang, L. Machine Learning-Guided Realization of Full-Color High-Quantum-Yield Carbon Quantum Dots. Nat. Commun. 2024, 15, 4843. [Google Scholar] [CrossRef] [PubMed]
- Noori, A.; Hasanuzzaman, M.; Roychowdhury, R.; Sarraf, M.; Afzal, S.; Das, S.; Rastogi, A. Silver Nanoparticles in Plant Health: Physiological Response to Phytotoxicity and Oxidative Stress. Plant Physiol. Biochem. 2024, 209, 108538. [Google Scholar] [CrossRef] [PubMed]
- Turkmen Koc, S.N.; Rezaei Benam, S.; Aral, I.P.; Shahbazi, R.; Ulubayram, K. Gold Nanoparticles-Mediated Photothermal and Photodynamic Therapies for Cancer. Int. J. Pharm. 2024, 655, 124057. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.F.; Ortiz, C.L.; Giraldo, R.K.A.; Munoz, C.C.; Cruz, J.C. In Silico Study of Spheroids Fusion through Magnetic Field Gradients. In Proceedings of the 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), Bogotá, Colombia, 13–15 October 2021; pp. 1–9. [Google Scholar]
- Piosik, E.; Modlińska, A.; Gołaszewski, M.; Chełminiak-Dudkiewicz, D.; Ziegler-Borowska, M. Influence of the Type of Biocompatible Polymer in the Shell of Magnetite Nanoparticles on Their Interaction with DPPC in Two-Component Langmuir Monolayers. J. Phys. Chem. B 2024, 128, 781–794. [Google Scholar] [CrossRef] [PubMed]
- Faisal, R.; Kamal, I.; Salih, N.; Préat, A. Optimum Formulation Design and Properties of Drilling Fluids Incorporated with Green Uncoated and Polymer-Coated Magnetite Nanoparticles. Arab. J. Chem. 2024, 17, 105492. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Nagatsuka, M.; Akino, K.; Yamauchi, N.; Nakashima, K.; Inose, T.; Nishidate, C.; Sato, K.; Gonda, K.; Kobayashi, Y. Development of Methods for Fabricating Nanoparticles Composed of Magnetite, Gold, and Silica toward Diagnostic Imaging. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128773. [Google Scholar] [CrossRef]
- Revia, R.A.; Zhang, M. Magnetite Nanoparticles for Cancer Diagnosis, Treatment, and Treatment Monitoring: Recent Advances. Mater. Today 2016, 19, 157–168. [Google Scholar] [CrossRef]
- Ortegón, S.; Peñaranda, P.A.; Rodríguez, C.F.; Noguera, M.J.; Florez, S.L.; Cruz, J.C.; Rivas, R.E.; Osma, J.F. Magnetic Torus Microreactor as a Novel Device for Sample Treatment via Solid-Phase Microextraction Coupled to Graphite Furnace Atomic Absorption Spectroscopy: A Route for Arsenic Pre-Concentration. Molecules 2022, 27, 6198. [Google Scholar] [CrossRef]
- Pinto, M.; Ramalho, P.S.F.; Moreira, N.F.F.; Gonçalves, A.G.; Nunes, O.C.; Pereira, M.F.R.; Soares, O.S.G.P. Application of Magnetic Nanoparticles for Water Purification. Environ. Adv. 2020, 2, 100010. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Bahreinizad, H.; Amiri, Z.; Aliabadi, H.A.M.; Salimi-Bani, M.; Nakisa, A.; Davoodi, F.; Tahmasebi, B.; Ahmadpour, F.; Radinekiyan, F.; et al. Functionalized Magnetic Nanoparticles for the Separation and Purification of Proteins and Peptides. TrAC Trends Anal. Chem. 2021, 141, 116291. [Google Scholar] [CrossRef]
- Yildiz, I. Applications of Magnetic Nanoparticles in Biomedical Separation and Purification. Nanotechnol. Rev. 2016, 5, 331–340. [Google Scholar] [CrossRef]
- Hettiarachchi, S.; Cha, H.; Ouyang, L.; Mudugamuwa, A.; An, H.; Kijanka, G.; Kashaninejad, N.; Nguyen, N.-T.; Zhang, J. Recent Microfluidic Advances in Submicron to Nanoparticle Manipulation and Separation. Lab. Chip 2023, 23, 982–1010. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Chen, Y.; Lüders, A.; Bertrand, T.; Hanedan, E.; Nielaba, P.; Bechinger, C.; Nelson, B.J. Scalable High-Throughput Microfluidic Separation of Magnetic Microparticles. Device 2024, 2, 100403. [Google Scholar] [CrossRef]
- Gädke, J.; Thies, J.-W.; Kleinfeldt, L.; Schulze, T.; Biedendieck, R.; Rustenbeck, I.; Garnweitner, G.; Krull, R.; Dietzel, A. Selective Manipulation of Superparamagnetic Nanoparticles for Product Purification and Microfluidic Diagnostics. Eur. J. Pharm. Biopharm. 2018, 126, 67–74. [Google Scholar] [CrossRef]
- Khizar, S.; Ben Halima, H.; Ahmad, N.M.; Zine, N.; Errachid, A.; Elaissari, A. Magnetic Nanoparticles in Microfluidic and Sensing: From Transport to Detection. Electrophoresis 2020, 41, 1206–1224. [Google Scholar] [CrossRef]
- Rodríguez, C.F.; Guzmán-Sastoque, P.; Gantiva-Diaz, M.; Gómez, S.C.; Quezada, V.; Muñoz-Camargo, C.; Osma, J.F.; Reyes, L.H.; Cruz, J.C. Low-Cost Inertial Microfluidic Device for Microparticle Separation: A Laser-Ablated PMMA Lab-on-a-Chip Approach without a Cleanroom. HardwareX 2023, 16, e00493. [Google Scholar] [CrossRef]
- Rodríguez, C.F.; Báez-Suárez, M.; Muñoz-Camargo, C.; Reyes, L.H.; Osma, J.F.; Cruz, J.C. Zweifach–Fung Microfluidic Device for Efficient Microparticle Separation: Cost-Effective Fabrication Using CO2 Laser-Ablated PMMA. Micromachines 2024, 15, 932. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.B.; Hanson, R.L.; Almughamsi, H.M.; Pang, C.; Fish, T.R.; Woolley, A.T. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal. Chem. 2020, 92, 150–168. [Google Scholar] [CrossRef]
- Wang, J.; Shao, C.; Wang, Y.; Sun, L.; Zhao, Y. Microfluidics for Medical Additive Manufacturing. Engineering 2020, 6, 1244–1257. [Google Scholar] [CrossRef]
- Tony, A.; Badea, I.; Yang, C.; Liu, Y.; Wells, G.; Wang, K.; Yin, R.; Zhang, H.; Zhang, W. The Additive Manufacturing Approach to Polydimethylsiloxane (PDMS) Microfluidic Devices: Review and Future Directions. Polymers 2023, 15, 1926. [Google Scholar] [CrossRef] [PubMed]
- Soroush, M.; Ait Mammar, W.; Wilson, A.; Ghourchian, H.; Salmain, M.; Boujday, S. Design and Optimization of A Magneto-Plasmonic Sandwich Biosensor for Integration within Microfluidic Devices. Biosensors 2022, 12, 799. [Google Scholar] [CrossRef]
- Rodríguez, C.F.; Andrade-Pérez, V.; Vargas, M.C.; Mantilla-Orozco, A.; Osma, J.F.; Reyes, L.H.; Cruz, J.C. Breaking the Clean Room Barrier: Exploring Low-Cost Alternatives for Microfluidic Devices. Front. Bioeng. Biotechnol. 2023, 11, 1176557. [Google Scholar] [CrossRef]
- Guzmán-Sastoque, P.; Sotelo, S.; Esmeral, N.P.; Albarracín, S.L.; Sutachan, J.-J.; Reyes, L.H.; Muñoz-Camargo, C.; Cruz, J.C.; Bloch, N.I. Assessment of CRISPRa-Mediated Gdnf Overexpression in an In Vitro Parkinson’s Disease Model. Front. Bioeng. Biotechnol. 2024, 12, 1420183. [Google Scholar] [CrossRef]
- Miao, X.; Qu, D.; Yang, D.; Nie, B.; Zhao, Y.; Fan, H.; Sun, Z. Synthesis of Carbon Dots with Multiple Color Emission by Controlled Graphitization and Surface Functionalization. Adv. Mater. 2018, 30, 1704740. [Google Scholar] [CrossRef]
- Cui, K.; Song, G.; Wang, W.; Liu, H.; Yang, Y.; Sun, C.; Zhao, Z.; Lin, H.; Chen, D. Force Analysis and Distribution Evolution of Fe3O4 Nanoparticles in Magnetic Fluids. Chin. J. Phys. 2024, 88, 982–990. [Google Scholar] [CrossRef]
- Yan, Y.; Spear, N.J.; Meng, Q.; Singh, M.R.; Macdonald, J.E.; Haglund, R.F. Harmonic Generation up to Fifth Order from Al/Au/CuS Nanoparticle Films. Nano Lett. 2024, 24, 5085–5092. [Google Scholar] [CrossRef]
- Ferrero, R.; Vicentini, M.; Manzin, A. Influence of Size, Volume Concentration and Aggregation State on Magnetic Nanoparticle Hyperthermia Properties versus Excitation Conditions. Nanoscale Adv. 2024, 6, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.O.; Solovyova, A.Y.; Elfimova, E.A. The Effect of Magnetic Field on the Orientational Ordering of Easy Magnetization Axes in Superparamagnetic Nanoparticles. J. Mol. Liq. 2024, 400, 124493. [Google Scholar] [CrossRef]
- Gusenbauer, M.; Schrefl, T. Simulation of Magnetic Particles in Microfluidic Channels. J. Magn. Magn. Mater. 2018, 446, 185–191. [Google Scholar] [CrossRef]
- Strayer, J.; Choe, H.; Wu, X.; Weigand, M.; Gómez-Pastora, J.; Zborowski, M.; Chalmers, J.J. Measuring Magnetic Force Field Distributions in Microfluidic Devices: Experimental and Numerical Approaches. Electrophoresis 2023, 45, 743–751. [Google Scholar] [CrossRef]
- Khashan, S.A.; Dagher, S.; Alazzam, A.; Mathew, B.; Hilal-Alnaqbi, A. Microdevice for Continuous Flow Magnetic Separation for Bioengineering Applications. J. Micromech. Microeng. 2017, 27, 055016. [Google Scholar] [CrossRef]
- Torres, C.E.; Cifuentes, J.; Gómez, S.C.; Quezada, V.; Giraldo, K.A.; Puentes, P.R.; Rueda-Gensini, L.; Serna, J.A.; Muñoz-Camargo, C.; Reyes, L.H.; et al. Microfluidic Synthesis and Purification of Magnetoliposomes for Potential Applications in the Gastrointestinal Delivery of Difficult-to-Transport Drugs. Pharmaceutics 2022, 14, 315. [Google Scholar] [CrossRef]
- Chen, C.K.; Khoo, B.L. A Density-Based Threshold Model for Evaluating the Separation of Particles in Heterogeneous Mixtures with Curvilinear Microfluidic Channels. Sci. Rep. 2020, 10, 18984. [Google Scholar] [CrossRef]
- Mitra, P.; Dutta, S.; Nagahanumaiah; Hens, A. Separation of Particles in Spiral Micro-Channel Using Dean’s Flow Fractionation. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 405. [Google Scholar] [CrossRef]
- Saha, S.C.; Francis, I.; Nassir, T. Computational Inertial Microfluidics: Optimal Design for Particle Separation. Fluids 2022, 7, 308. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, H.; Song, R.; Hu, X. Simulation Analysis of the Motion of Superparamagnetic Particles in Liquid-Phase Fluid under a Magnetic Field. Appl. Sci. 2023, 13, 5406. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Y.; Du, F.; Nie, Z.; Wei, G.; Wang, Y.; Liu, X. Numerical Simulations of Combined Dielectrophoresis and Alternating Current Electrothermal Flow for High-Efficient Separation of (Bio)Microparticles. Micromachines 2024, 15, 345. [Google Scholar] [CrossRef] [PubMed]
- Reeves, D.B.; Weaver, J.B. Simulations of Magnetic Nanoparticle Brownian Motion. J. Appl. Phys. 2012, 112, 124311. [Google Scholar] [CrossRef]
- Fukuda, H.; Kuramochi, H.; Shibuta, Y.; Ichiki, T. Analysis of Brownian Motion Trajectories of Non-Spherical Nanoparticles Using Deep Learning. APL Mach. Learn. 2023, 1, 046104. [Google Scholar] [CrossRef]
- Zeng, L.; Chen, X.; Du, J.; Yu, Z.; Zhang, R.; Zhang, Y.; Yang, H. Label-Free Separation of Nanoscale Particles by an Ultrahigh Gradient Magnetic Field in a Microfluidic Device. Nanoscale 2021, 13, 4029–4037. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, R.; Shamloo, A.; Akbari, J. Design of a Hybrid Inertial and Magnetophoretic Microfluidic Device for CTCs Separation from Blood. Micromachines 2021, 12, 877. [Google Scholar] [CrossRef]
- Hewlin, R.L.; Edwards, M.; Schultz, C. Design and Development of a Traveling Wave Ferro-Microfluidic Device and System Rig for Potential Magnetophoretic Cell Separation and Sorting in a Water-Based Ferrofluid. Micromachines 2023, 14, 889. [Google Scholar] [CrossRef] [PubMed]
- Descamps, L.; Audry, M.-C.; Howard, J.; Mekkaoui, S.; Albin, C.; Barthelemy, D.; Payen, L.; Garcia, J.; Laurenceau, E.; Le Roy, D.; et al. Self-Assembled Permanent Micro-Magnets in a Polymer-Based Microfluidic Device for Magnetic Cell Sorting. Cells 2021, 10, 1734. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Cheng, R.; Lim, S.H.; Miller, J.R.; Zhang, W.; Tang, W.; Xie, J.; Mao, L. Biocompatible and Label-Free Separation of Cancer Cells from Cell Culture Lines from White Blood Cells in Ferrofluids. Lab. Chip 2017, 17, 2243–2255. [Google Scholar] [CrossRef]
- Kye, H.G.; Park, B.S.; Lee, J.M.; Song, M.G.; Song, H.G.; Ahrberg, C.D.; Chung, B.G. Dual-Neodymium Magnet-Based Microfluidic Separation Device. Sci. Rep. 2019, 9, 9502. [Google Scholar] [CrossRef] [PubMed]
- Khashan, S.; Odhah, A.A.; Taha, M.; Alazzam, A.; Al-Fandi, M. Enhanced Microfluidic Multi-Target Separation by Positive and Negative Magnetophoresis. Sci. Rep. 2024, 14, 13293. [Google Scholar] [CrossRef]
Material | Purity | Supplier | Location |
---|---|---|---|
N-[3-Dimethylamino-propyl]-N’-ethyl carbodiimide hydrochloride (EDC) | 98% | Sigma-Aldrich | St. Louis, MO, USA |
Iron (II) chloride tetrahydrate | 98% | Alfa Aesar | Haverhill, MA, USA |
Iron (III) chloride hexahydrate | 97% | Panreac AppliChem | Barcelona, Spain |
N-hydroxysuccinimide (NHS) | 98% | Sigma-Aldrich | St. Louis, MO, USA |
(3-Aminopropyl) triethoxysilane (APTES) | 99% | Sigma-Aldrich | St. Louis, MO, USA |
Tetramethylammonium hydroxide pentahydrate (TMAH) | ≥97% | Sigma-Aldrich | St. Louis, MO, USA |
Rhodamine B | >95% | Sigma-Aldrich | St. Louis, MO, USA |
Citric acid | 99% | Sigma-Aldrich | St. Louis, MO, USA |
Urea | 99% | Sigma-Aldrich | St. Louis, MO, USA |
Sodium chloride (NaCl) | 99.9% | Merck | St. Louis, MO, USA |
Polymethyl methacrylate (PMMA) sheets | - | Local distributors | Bogotá, Colombia |
Material | Quantity | Cost per Unit/mL (USD) | Total Cost (USD) |
---|---|---|---|
Microfluidic connectors | 3 | USD 0.03 | USD 0.09 |
PMMA Sheets (7.5 cm × 2 cm × 2 mm) | 1 | - | USD 0.19 |
PMMA Sheets (7.5 cm × 2 cm × 3 mm) | 1 | - | USD 0.28 |
UHU glue | 1.5 mL | USD 0.087 | USD 0.13 |
70% v/v Ethanol | 10 mL | USD 0.002 | USD 0.02 |
96% v/v Ethanol | 2 mL | USD 0.015 | USD 0.03 |
Total cost | USD 0.74 |
Study | Our Work | [65] | [66] | [67] | [68] | [69] | [70] | [71] |
---|---|---|---|---|---|---|---|---|
Channel Geometry | T-shaped | Spiral-shaped, Y-shaped (magnetic section) | Wave | Lineal | Y-shaped | Y-shaped | Y-shaped | |
Material | PMMA | PDMS | PDMS | PDMS | PDMS | PDMS | PDMS | PDMS |
Fabrication technique | CO2 laser | Soft lithography | Soft photolithography | Soft lithography | Soft lithography | Soft lithography | Soft lithography | Soft lithography |
Depth | 1 mm | - | - | 20–100 µm | 0.1 mm | - | 900 µm | 100 µm |
Size microfluidic channel | 1 mm | 30 µm in thickness | 400 µm in width | 1–3 mm in width | 0.5 mm in width | 52 µm in thickness | 900 µm in width | <250 µm in width |
Cross section | Gaussian | Rectangular | Rectangular | Rectangular | Rectangular | Rectangular | Rectangular | Multichannel |
Flow rate | 2–200 mL/h | 0.3 µL/min–0.7 µL/min | 600–1200 µL/min | - | 0.5–2 mL/h | 0.5–8 µL/min | 3–10 µL/min | - |
Cost per chip | USD 0.74 | >1 USD | >1 USD | >1 USD | >1 USD | >1 USD | >1 USD | >1 USD |
Fabrication time | 30 min | >1 h | 2 h 24 min | >1 h | 4 h | >1 h | >1 h | >1 h |
Separation efficiency | 93.31% ± 5.63% | 88.79–97.36% | 93–95% | 96.49–98.72% | 75–100% | 80–86% | 97–99% | 50–100% |
Particle size | 20 nm–2 µm | 0.2–1 µm | 7.5–8.7 µm | 10 µm | - | 5.8 µm and 15.7 µm | 2–16 µm | 5–18 µm |
Application | Micro- and nanoparticle purification | Separation and purification of the biological samples of nanometer size | Circulating tumor cells (CTCs) isolation from a blood sample | Magnetophoretic separation of cells | Cell sorting | Cell separation | Cell sorting | Multi-target separation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez, C.F.; Guzmán-Sastoque, P.; Muñoz-Camargo, C.; Reyes, L.H.; Osma, J.F.; Cruz, J.C. Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA. Micromachines 2024, 15, 1057. https://doi.org/10.3390/mi15081057
Rodríguez CF, Guzmán-Sastoque P, Muñoz-Camargo C, Reyes LH, Osma JF, Cruz JC. Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA. Micromachines. 2024; 15(8):1057. https://doi.org/10.3390/mi15081057
Chicago/Turabian StyleRodríguez, Cristian F., Paula Guzmán-Sastoque, Carolina Muñoz-Camargo, Luis H. Reyes, Johann F. Osma, and Juan C. Cruz. 2024. "Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA" Micromachines 15, no. 8: 1057. https://doi.org/10.3390/mi15081057
APA StyleRodríguez, C. F., Guzmán-Sastoque, P., Muñoz-Camargo, C., Reyes, L. H., Osma, J. F., & Cruz, J. C. (2024). Enhancing Magnetic Micro- and Nanoparticle Separation with a Cost-Effective Microfluidic Device Fabricated by Laser Ablation of PMMA. Micromachines, 15(8), 1057. https://doi.org/10.3390/mi15081057