Scattering of a Bessel Pincer Light-Sheet Beam on a Charged Particle at Arbitrary Size
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Far-Field Scattering Intensity
3.1.1. Intensity with Different Size Parameter
3.1.2. Intensity with Different Beam Wavelength
3.1.3. Intensity with Different Azimuth Angle
3.1.4. Intensity with Different Surface Charge
3.1.5. Intensity with Different Refractive Index
3.1.6. Intensity with Different Beam Order ł
3.1.7. Intensity with Different Beam Scaling Parameter
3.2. Efficiency Factor
3.2.1. Efficiencies with Different Refractive Index under Varying Size Parameter
3.2.2. Efficiencies with Different Beam Scaling Parameter under Varying Size Parameter
3.2.3. Efficiencies with Different Beam Order ł under Varying Size Parameter
3.2.4. Efficiencies with Different Refractive Index under Varying Sigma
3.2.5. Efficiencies with Different Beam Scaling Parameter under Varying Sigma
3.2.6. Efficiencies with Different Beam Order ł under Varying Sigma
3.2.7. Efficiencies with Different Size Parameter X under Varying Sigma
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GLMT | Generalized Lorenz–Mie theory |
VSWFs | Vector Spherical Wave Functions |
BSCs | Beam Shape coefficients |
DDA | Discrete Dipole Approximation |
References
- Walch, B.; Horányi, M.; Robertson, S. Charging of dust grains in plasma with energetic electrons. Phys. Rev. Lett. 1995, 75, 838. [Google Scholar] [CrossRef] [PubMed]
- Piel, A.; Melzer, A. Dynamical processes in complex plasmas. Plasma Phys. Control. Fusion 2001, 44, R1–R26. [Google Scholar] [CrossRef]
- Heifetz, A.; Chien, H.-T.; Liao, S.; Gopalsami, N.; Raptis, A.C. Millimeter-wave scattering from neutral and charged water droplets. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2550–2557. [Google Scholar] [CrossRef]
- Fortov, V.E.; Petrov, O.F.; Usachev, A.D.; Zobnin, A.V. Micron-sized particle-charge measurements in an inductive rf gas-discharge plasma using gravity-driven probe grains. Phys. Rev. E 2004, 70, 046415. [Google Scholar] [CrossRef]
- Khrapak, S.A.; Ratynskaia, S.V.; Zobnin, A.V.; Usachev, A.D.; Yaroshenko, V.V.; Thoma, M.H.; Kretschmer, M.; Höfner, H.; Morfill, G.E.; Petrov, O.F.; et al. Particle charge in the bulk of gas discharges. Phys. Rev. E 2005, 72, 016406. [Google Scholar] [CrossRef]
- Kersten, H.; Deutsch, H.; Kroesen, G.M.W. Charging of micro-particles in plasma–dust interaction. Int. J. Mass Spectrom. 2004, 233, 51–60. [Google Scholar] [CrossRef]
- Ye, W.; Hu, X.; Zhou, S.; Wang, C.; Jiang, J.; Yang, T.; Gao, F. Electromagnetic Response of Clustered Charged Particles. Front. Mater. 2021, 8, 739116. [Google Scholar] [CrossRef]
- Friedrich, M.; Rapp, M. News from the lower ionosphere: A review of recent developments. Surv. Geophys. 2009, 30, 525–559. [Google Scholar] [CrossRef]
- Dou, X.Q.; Xie, L. Electromagnetic wave attenuation due to the charged particles in dust&sand (DUSA) storms. J. Quant. Spectrosc. Radiat. Transf. 2017, 196, 169–175. [Google Scholar]
- Sickafoose, A.A.; Colwell, J.E.; Horányi, M.; Robertson, S. Photoelectric charging of dust particles in vacuum. Phys. Rev. Lett. 2000, 84, 6034. [Google Scholar] [CrossRef]
- Mann, I. Interplanetary medium-A dusty plasma. Adv. Space Res. 2008, 41, 160–167. [Google Scholar] [CrossRef]
- Kocifaj, M.; Klačka, J.; Videen, G.; Kohút, I. Optical properties of a polydispersion of small charged cosmic dust particles. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 2561–2566. [Google Scholar] [CrossRef]
- Xie, L.; Dou, X.Q.; Zhou, J. Sizing charged particles by phase Doppler anemometry. Appl. Opt. 2016, 55, 3279–3286. [Google Scholar] [CrossRef] [PubMed]
- Kundracik, F.; Kocifaj, M.; Videen, G.; Klačka, J. Effect of charged-particle surface excitations on near-field optics. Appl. Opt. 2015, 54, 6674–6681. [Google Scholar] [CrossRef]
- Sadrara, M.; Miri, M. Scattering of electromagnetic waves by a cluster of charged spherical nanoparticles. JOSA B 2016, 33, 2552–2559. [Google Scholar] [CrossRef]
- Zhong, H.; Xie, L.; Zhou, J. T-matrix formulation of electromagnetic wave scattering by charged non-spherical scatterers. J. Quant. Spectrosc. Radiat. Transf. 2020, 247, 106952. [Google Scholar] [CrossRef]
- Mie, G. Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann. Phys. 1908, 25, 377–445. [Google Scholar] [CrossRef]
- Logan, N.A. Survey of some early studies of the scattering of plane waves by a sphere. Proc. IEEE 1965, 53, 773–785. [Google Scholar] [CrossRef]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Bohren, C.F.; Hunt, A.J. Scattering of electromagnetic waves by a charged sphere. Can. J. Phys. 1977, 55, 1930–1935. [Google Scholar] [CrossRef]
- Klačka, J.; Kocifaj, M. Scattering of electromagnetic waves by charged spheres and some physical consequences. J. Quant. Spectrosc. Radiat. Transf. 2007, 106, 170–183. [Google Scholar] [CrossRef]
- Kuznetsov, I.E.; Semenov, M.E.; Kanishcheva, O.I.; Meleshenko, P.A. On the Interaction of Electromagnetic Waves with Charged Aerosol Particles in Atmosphere; IEEE: Shanghai, China, 2016; pp. 3542–3545. [Google Scholar]
- Kocifaj, M.; Kundracik, F.; Videen, G. Optical characterization of electrically charged particles using discrete dipole approximation. J. Quant. Spectrosc. Radiat. Transf. 2016, 184, 161–166. [Google Scholar] [CrossRef]
- Rosenkrantz, E.; Arnon, S. Enhanced absorption of light by charged nanoparticles. Opt. Lett. 2010, 35, 1178–1180. [Google Scholar] [CrossRef]
- Li, H.Y.; Wu, Z.; Bai, L. Scattering for charged multisphere structure located in plane wave/Gaussian beam. J. Electromagn. Waves Appl. 2010, 24, 2037–2047. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Lacis, A.A. Scattering, Absorption, and Emission of Light by Small Particles; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Kerker, M. The Scattering of Light and Other Electromagnetic Radiation: Physical Chemistry: A Series of Monographs; Academic Press: Cambridge, MA, USA, 2013; Volume 16. [Google Scholar]
- Gong, A.; Qiu, Y.; Chen, X.; Zhao, Z.; Xia, L.; Shao, Y. Biomedical applications of terahertz technology. Appl. Spectrosc. Rev. 2020, 55, 418–438. [Google Scholar] [CrossRef]
- Lewis, R.A. A review of terahertz sources. J. Phys. Appl. Phys. 2014, 47, 374001. [Google Scholar] [CrossRef]
- Park, S.-G.; Jin, K.H.; Yi, M.; Ye, J.C.; Ahn, J.; Jeong, K.-H. Enhancement of terahertz pulse emission by optical nanoantenna. ACS Nano 2012, 6, 2026–2031. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Wang, X.; Ye, J.; Feng, S.; Sun, W.; Akalin, T.; Zhang, Y. Spatial terahertz modulator. Sci. Rep. 2013, 3, 3347. [Google Scholar] [CrossRef]
- Sirtori, C.; Barbieri, S.; Colombelli, R. Wave engineering with THz quantum cascade lasers. Nat. Photonics 2013, 7, 691–701. [Google Scholar] [CrossRef]
- Jazbinsek, M.; Puc, U.; Abina, A.; Zidansek, A. Organic crystals for THz photonics. Appl. Sci. 2019, 9, 882. [Google Scholar] [CrossRef]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Mittleman, D. Sensing with Terahertz Radiation; Springer: Berlin/Heidelberg, Germany, 2013; Volume 85. [Google Scholar]
- Yu, N.; Wang, Q.J.; Kats, M.A.; Fan, J.A. Terahertz plasmonics. Electron. Lett. 2010, 46, 52–57. [Google Scholar] [CrossRef]
- D’Angelo, F.; Mics, Z.; Bonn, M.; Turchinovich, D. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Opt. Express 2014, 22, 12475–12485. [Google Scholar] [CrossRef]
- Teo, S.M.; Ofori-Okai, B.K.; Werley, C.A.; Nelson, K.A. Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Rev. Sci. Instruments 2015, 86, 051301. [Google Scholar] [CrossRef]
- Hua, Y.; Zhang, H. Qualitative and quantitative detection of pesticides with terahertz time-domain spectroscopy. IEEE Trans. Microw. Theory Tech. 2010, 58, 2064–2070. [Google Scholar]
- Li, B.; Zhao, X.; Zhang, Y.; Zhang, S.; Luo, B. Prediction and monitoring of leaf water content in soybean plants using terahertz time-domain spectroscopy. Comput. Electron. Agric. 2020, 170, 105239. [Google Scholar] [CrossRef]
- Kürner, T. Towards future THz communications systems. Terahertz Sci. Technol. 2012, 5, 11–17. [Google Scholar]
- Nagatsuma, T.; Horiguchi, S.; Minamikata, Y.; Yoshimizu, Y.; Hisatake, S.; Kuwano, S.; Yoshimoto, N.; Terada, J.; Takahashi, H. Terahertz wireless communications based on photonics technologies. Opt. Express 2013, 21, 23736–23747. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Sarieddeen, H.; Alouini, M.-S.; Al-Naffouri, T.Y. An overview of signal processing techniques for terahertz communications. Proc. IEEE 2021, 109, 1628–1665. [Google Scholar] [CrossRef]
- Song, H.-J.; Lee, N. Terahertz communications: Challenges in the next decade. IEEE Trans. Terahertz Sci. Technol. 2021, 12, 105–117. [Google Scholar] [CrossRef]
- Kemp, M.C.; Taday, P.F.; Cole, B.E.; Cluff, J.A.; Fitzgerald, A.J.; Tribe, W.R. Terahertz for military and security applications. SPIE 2003, 5070, 44–52. [Google Scholar]
- Vaseashta, A. New THz Technologies and Applications in Applications in Support of Safety and Security; Springer: Berlin/Heidelberg, Germany, 2014; pp. 277–292. [Google Scholar]
- Taylor, Z.D.; Singh, R.S.; Bennett, D.B.; Tewari, P.; Kealey, C.P.; Bajwa, N.; Culjat, M.O.; Stojadinovic, A.; Lee, H.; Hubschman, J.P.; et al. THz medical imaging: In vivo hydration sensing. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 201–219. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhu, L.-G.; Meng, K.; Huang, W.; Shi, Q. THz medical imaging: From in vitro to in vivo. Trends Biotechnol. 2022, 40, 816–830. [Google Scholar] [CrossRef] [PubMed]
- Rogalin, V.E.; Kaplunov, I.A.; Kropotov, G.I. Optical materials for the THz range. Opt. Spectrosc. 2018, 125, 1053–1064. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, S.; Qi, J.; Yang, X. Extension of complex refractive index model and analysis of scattering properties of charged submicron spheres. J. Quant. Spectrosc. Radiat. Transf. 2020, 242, 106735. [Google Scholar] [CrossRef]
- Moreno, D.; Santoyo, F.M.; Guerrero, J. Ascencion and Funes-Gallanzi, Marcelo. Particle positioning from charge-coupled device images by the generalized Lorenz–Mie theory and comparison with experiment. Appl. Opt. 2000, 39, 5117–5124. [Google Scholar] [CrossRef] [PubMed]
- Durnin, J. Exact solutions for nondiffracting beams. I. The scalar theory. JOSA A 1987, 4, 651–654. [Google Scholar] [CrossRef]
- Durnin, J.J.J.M.; Miceli, J.J., Jr.; Eberly, J.H. Diffraction-free beams. Phys. Rev. Lett. 1987, 58, 1499. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yu, W.; Hu, R.; Qu, J.; Liu, L. Numerical simulation and experimental confirmation on reconstruction of Bessel beam. Laser Optoelectron. Prog. 2022, 59, 0617021. [Google Scholar]
- Xie, J.J.; Tang, S.Y.; Chen, Y.Q.; Yu, W.H.; Li, Y.P.; Shen, B.; Qu, J.; Liu, L. Self-reconstruction characteristics of Bessel beam in biological tissue. Chin. J. Lasers 2022, 49, 0507302. [Google Scholar]
- Hu, H.-Q.; Wu, F.-T.; Hu, R.; Yang, Y.-F. Propagation Characteristics and Self-reconstruction of Radially Polarized Spiral Bessel Beam. Acta Photonica Sin. 2019, 48, 326001. [Google Scholar]
- Sun, R.D.; Guo, L.X.; Cheng, M.-J.; Yan, X.; Li, J.T. Propagation characteristics of Bessel-gaussian beam in anisotropic atmosphere. Acta Photonica Sin. 2018, 47, 12. [Google Scholar]
- Wen, W.; Chu, X. Quantitative comparison of self-healing ability between Bessel–Gaussian beam and Airy beam. Ann. Phys. 2015, 360, 549–555. [Google Scholar] [CrossRef]
- Gong, S.; Li, R.; Liu, Y.; Zhang, J. Scattering of a vector Bessel vortex beam by a charged sphere. J. Quant. Spectrosc. Radiat. Transf. 2018, 215, 13–24. [Google Scholar] [CrossRef]
- Mitri, F.G.; Li, R.X.; Guo, L.X.; Ding, C.Y. Optical tractor Bessel polarized beams. J. Quant. Spectrosc. Radiat. Transf. 2017, 187, 97–115. [Google Scholar] [CrossRef]
- Zhuang, W.; Li, R.; Liang, J.; Jia, Y. Debye series expansion for light scattering by a charged sphere. Appl. Opt. 2021, 60, 1903–1915. [Google Scholar] [CrossRef]
- Li, R.; Li, P.; Zhang, J.; Ding, C.; Cui, Z. Optical Bessel tractor polarized beams on a charged sphere of arbitrary size. J. Quant. Spectrosc. Radiat. Transf. 2018, 219, 186–198. [Google Scholar] [CrossRef]
- Zhang, S.; Li, R.; Wei, B.; Zhang, J.; Sun, H.; Song, N. Scattering of a non-paraxial Bessel light-sheet by a sphere of arbitrary size. J. Quant. Spectrosc. Radiat. Transf. 2020, 245, 106869. [Google Scholar] [CrossRef]
- Yang, Y.; Nie, Z.; Feng, Y.; Li, R. Internal and near-surface fields for a charged sphere irradiated by a vector Bessel beam. J. Quant. Spectrosc. Radiat. Transf. 2020, 240, 106705. [Google Scholar] [CrossRef]
- Mitri, F.G. Interaction of Bessel pincers light-sheets with an absorptive subwavelength sphere coated by a plasmonic layer. JOSA B 2017, 34, 1471–1477. [Google Scholar] [CrossRef]
- Mitri, F.G. Nonparaxial Bessel and Bessel–Gauss pincers light-sheets. Phys. Lett. A 2017, 381, 171–175. [Google Scholar] [CrossRef]
- Zhang, S.; Li, R.; Wei, B.; Song, N.; Yang, L.; Sun, H. Scattering of a non-paraxial Bessel pincer light-sheet by a dielectric sphere of arbitrary size. J. Quant. Spectrosc. Radiat. Transf. 2021, 268, 107647. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, B.; Wei, Q.; Li, R.; Chen, S.; Song, N. Optical Force of Bessel Pincer Light-Sheets Beam on a Dielectric Sphere of Arbitrary Size. Nanomaterials 2022, 12, 3723. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ng, J.; Wang, P.; Lin, Z. Analytical partial wave expansion of vector Bessel beam and its application to optical binding. Opt. Lett. 2010, 35, 1674–1676. [Google Scholar] [CrossRef]
- Gouesbet, G. Generalized lorenz-mie theory and applications. Part. Part. Syst. Charact. 1994, 11, 22–34. [Google Scholar] [CrossRef]
- Klacka, J.; Kocifaj, M. On the scattering of electromagnetic waves by a charged sphere. Prog. Electromagn. Res. 2010, 109, 17–35. [Google Scholar] [CrossRef]
- Gao, C.; Sun, B.; Zhang, Y. Electromagnetic wave scattering by charged coated spheres. J. Quant. Spectrosc. Radiat. Transf. 2021, 272, 107757. [Google Scholar] [CrossRef]
- Markoš, P.; Kocifaj, M.; Kundracik, F.; Videen, G. Electromagnetic resonances observed in small, charged particles. J. Quant. Spectrosc. Radiat. Transf. 2021, 272, 107798. [Google Scholar] [CrossRef]
- Heinisch, R.L.; Bronold, F.X.; Fehske, H. Mie scattering by a charged dielectric particle. Phys. Rev. Lett. 2012, 109, 243903. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Z.; Qi, J.; Guo, K.; Niu, C.; Na, X.; Yang, X. The enhancement effect of surface charges on forward and backward scattering of submicron polydisperse particles. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107132. [Google Scholar] [CrossRef]
- Hu, Q.; Xie, L. Scattering phase function of a charged spherical particle. Appl. Opt. 2015, 54, 8439–8443. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Chen, S.; Wei, Q.; Li, R.; Wei, B.; Song, N. Scattering of a Bessel Pincer Light-Sheet Beam on a Charged Particle at Arbitrary Size. Micromachines 2024, 15, 975. https://doi.org/10.3390/mi15080975
Zhang S, Chen S, Wei Q, Li R, Wei B, Song N. Scattering of a Bessel Pincer Light-Sheet Beam on a Charged Particle at Arbitrary Size. Micromachines. 2024; 15(8):975. https://doi.org/10.3390/mi15080975
Chicago/Turabian StyleZhang, Shu, Shiguo Chen, Qun Wei, Renxian Li, Bing Wei, and Ningning Song. 2024. "Scattering of a Bessel Pincer Light-Sheet Beam on a Charged Particle at Arbitrary Size" Micromachines 15, no. 8: 975. https://doi.org/10.3390/mi15080975
APA StyleZhang, S., Chen, S., Wei, Q., Li, R., Wei, B., & Song, N. (2024). Scattering of a Bessel Pincer Light-Sheet Beam on a Charged Particle at Arbitrary Size. Micromachines, 15(8), 975. https://doi.org/10.3390/mi15080975