Democratizing Microreactor Technology for Accelerated Discoveries in Chemistry and Materials Research
Abstract
:1. Introduction
1.1. The Era of Accelerated Discovery
1.2. Flow Chemistry Using a Microreactor as a Platform for AD
- Rapid mixing: Rapid and uniform mixing of reactants due to shortened diffusion distance
- Precise temperature control: Efficient heat transfer due to large specific surface area
- Precise residence time (reaction time) control: Controllable residence time by reactor volume and solution flow rate
1.3. Review
2. Elements of Microreactor-Enabled Discovery Accelerator
2.1. Characteristics of a Microreactor
2.2. Fabrication Technologies for Microreactor
2.3. Online Reaction Monitoring
2.4. Device Design Tools
2.5. AI and Robotics
3. Applications of Microreactor as a Discovery Accelerator
3.1. High-Throughput Screening and Optimization
3.2. Automated Material Synthesis in Continuous Flow
3.3. Rapid and Precise Measurement of Reaction Kinetics
4. Toward Democratizing Microreactor Technology for Accelerated Discoveries
4.1. Standardization for Microreactor Technologies for AD
4.2. Integrated Development Environment of Microreactor Development
4.3. Democratizing Microreactors Technology by Open-Source Software and Platforms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuhr, A.S.; Sumpter, B.G. Deep Generative Models for Materials Discovery and Machine Learning-Accelerated Innovation. Front. Mater. 2022, 9, 865270. [Google Scholar] [CrossRef]
- Sanchez-Lengeling, B.; Aspuru-Guzik, A. Inverse molecular design using machine learning: Generative modelsfor matter engineering. Science 2018, 361, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernandez-Lobato, J.M.; Sanchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci. 2018, 4, 268–276. [Google Scholar] [CrossRef]
- Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large language models in medicine. Nat. Med. 2023, 29, 1930–1940. [Google Scholar] [CrossRef] [PubMed]
- The Business Research Company. Chemicals Global Market Report 2023; The Business Research Company: Lyon, France, 2024; Available online: https://www.reportlinker.com/p05292863/?utm_source=GNW (accessed on 1 July 2024).
- Gil, D.; Green, W.M.J. The Future of Computing: Bits + Neurons + Qubits. In Proceedings of the 2020 IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 16–20 February 2020; pp. 30–39. [Google Scholar] [CrossRef]
- Christensen, M.; Yunker, L.P.E.; Adedeji, F.; Häse, F.; Roch, L.M.; Gensch, T.; Gomes, G.d.P.; Zepel, T.; Sigman, M.S.; Aspuru-Guzik, A.; et al. Data-science driven autonomous process optimization. Commun. Chem. 2021, 4, 112. [Google Scholar] [CrossRef]
- Rizkin, B.A.; Shkolnik, A.S.; Ferraro, N.J.; Hartman, R.L. Combining automated microfluidic experimentation with machine learning for efficient polymerization design. Nat. Mach. Intell. 2020, 2, 200–209. [Google Scholar] [CrossRef]
- Epps, R.W.; Volk, A.A.; Reyes, K.G.; Abolhasani, M. Accelerated AI development for autonomous materials synthesis in flow. Chem. Sci. 2021, 12, 6025–6036. [Google Scholar] [CrossRef]
- Granda, J.M.; Donina, L.; Dragone, V.; Long, D.-L.; Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 2018, 559, 377–381. [Google Scholar] [CrossRef]
- Coley, C.W.; Thomas, D.A.; Lummiss, J.A.M.; Jaworski, J.N.; Breen, C.P.; Schultz, V.; Hart, T.; Fishman, J.S.; Rogers, L.; Gao, H.; et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 2019, 365, eaax1566. [Google Scholar] [CrossRef]
- MacLeod, B.P.; Parlane, F.G.L.; Morrissey, T.D.; Häse, F.; Roch, L.M.; Dettelbach, K.E.; Moreira, R.; Yunker, L.P.E.; Rooney, M.B.; Deeth, J.R.; et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 2020, 6, eaaz8867. [Google Scholar] [CrossRef]
- Erps, T.; Foshey, M.; Luković, M.K.; Shou, W.; Goetzke, H.H.; Dietsch, H.; Stoll, K.; von Vacano, B.; Matusik, W. Accelerated discovery of 3D printing materials using data-driven multiobjective optimization. Sci. Adv. 2021, 7, eabf7435. [Google Scholar] [CrossRef] [PubMed]
- Seifrid, M.; Pollice, R.; Aguilar-Granda, A.; Chan, Z.M.; Hotta, K.; Tian, C.; Vestfrid, S.; Wu, T.C.; Aspuru-Guzik, A. Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab. Acc. Chem. Res. 2022, 55, 2454–2466. [Google Scholar] [CrossRef]
- Pyzer-Knapp, E.O.; Pitera, J.W.; Staar, P.W.J.; Takeda, S.; Laino, T.; Sanders, D.P.; Sexton, J.; Smith, J.R.; Curioni, A. Accelerating materials discovery using artificial intelligence, high performance computing and robotics. npj Comput. Mater. 2022, 8, 84. [Google Scholar] [CrossRef]
- Smith, J.R.; Curioni, A. Natural language processing: State of the art, current trends and challenges. Multimed. Tools Appl. 2023, 82, 3713–3744. [Google Scholar] [CrossRef]
- Balkenhohl, F.; Bussche-Hünnefeld, C.v.D.; Lansky, A.; Zechel, C. Combinatorial Synthesis of Small Organic Molecules. Angew. Chem. Int. Ed. Engl. 1996, 35, 2288–2337. [Google Scholar] [CrossRef]
- Gordon, E.M.; Barrett, R.W.; Dower, W.J.; Fodor, S.P.A.; Gallop, M.A. Applications of Combinatorial Technologies to Drug Discovery. 2. Combinatorial Organic Synthesis, Library Screening Strategies, and Future Directions. J. Med. Chem. 1994, 37, 1385–1401. [Google Scholar] [CrossRef]
- Asano, Y.; Oda, M. Development of Microreactors for Mixing at a High Flow Rate Ratio. Soc. Chem. Eng. JPN 2022, 55, 113–120. [Google Scholar] [CrossRef]
- Ehrfeld Mikrotechnik GmbH. Available online: https://www.ehrfeld.com/en (accessed on 24 July 2024).
- Bartels Mikrotechnik GmbH. Available online: https://bartels-mikrotechnik.de/microfluidic-components-categories/ (accessed on 24 July 2024).
- Cussler, E.L. Diffusion—Mass Transfer in Fluid Systems, 3rd ed.Cambridge University Press: New York, NY, USA, 2009; p. 157. [Google Scholar]
- Miyake, R.T. Innovation of Chemical Process Engineering Based on Micro-Reactor. HITACHI Prof. Rep. 2006, 88, 916–917. [Google Scholar]
- Miyake, R.; Lammerinkz, T.S.J.; Elwenspoek, M.; Fluitman, J.H.J. Micro mixer with fast diffusion. In Proceedings of the IEEE Micro Electro Mechanical Systems, Fort Lauderdale, FL, USA, 7–10 February 1993; pp. 248–253. [Google Scholar] [CrossRef]
- Elwenspoek, M.; Lammerink, T.S.J.; Miyake, R.; Fluitman, J.H.J. Towards integrated microliquid handling systems. J. Micromech. Microeng. 1994, 4, 227–245. [Google Scholar] [CrossRef]
- Mensinger, H.; Richter, T.; Hessel, V.; Dapper, J.; Ehrfeld, W. Microreactor with Integrated Static Mixer and Analysis System. In μTAS (Micro Total Analysis Systems)’94 Workshop, University of Twente, The Netherlands, 21–22 November 1994; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; pp. 237–243. [Google Scholar]
- Ehrfeld, W.; Hessel, V.; Löwe, H. Microreactors; WILEY-VCH Verlag GmbH: Weinheim, Germany, 2000. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, H.-R. A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future. Anal. Chim. Acta 2016, 914, 7–16. [Google Scholar] [CrossRef]
- Hattori, W.; Someya, H.; Baba, M.; Kawaura, H. Size-based continuous-flow directional control of DNA with a nano-pillar anisotropic array. J. Chromatogr. A 2004, 1051, 141–146. [Google Scholar] [CrossRef]
- Miyaguchi, H.; Tokeshi, M.; Kikutani, Y.; Hibara, A.; Inoue, H.; Kitamori, T. Microchip-based liquid–liquid extraction for gas-chromatography analysis of amphetamine-type stimulants in urine. J. Chromatogr. A 2006, 1129, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Hibara, A.; Saito, T.; Kim, H.-B.; Tokeshi, M.; Ooi, T.; Nakao, M.; Kitamori, T. Nanochannels on a Fused-Silica Microchip and Liquid Properties Investigation by Time-Resolved Fluorescence Measurements. Anal. Chem. 2002, 74, 6170–6176. [Google Scholar] [CrossRef] [PubMed]
- Tazawa, H.; Sato, T.; Sakuta, Y.; Miyake, R. Development of microfluidic devices for on-site water quality testing using glass molding process. Anal. Sci. 2023, 39, 1269–1277. [Google Scholar] [CrossRef]
- Tanaka, S.; Sugimoto, S.; Li, J.-F.; Watanabe, R.; Esashi, M. Silicon Carbide Micro-Reaction-Sintering using Micromachined Silicon Molds. J. MicroElectroMech. Syst. 2001, 10, 55–61. [Google Scholar] [CrossRef]
- Ko, D.-H.; Gyak, K.-W.; Kim, D.-P. Emerging Microreaction Systems Based on 3D Printing Techniques and Separation Technologies. J. Flow Chem. 2017, 7, 72–81. [Google Scholar] [CrossRef]
- Šercer, M.; Rezić, T.; Godec, D.; Oros, D.; Pilipović, A.; Ivušić, F.; Rezić, I.; Andlar, M.; Ludwig, R.; Šantek, B. Production by PolyJet Matrix 3D-Printing Technology: Hydrodynamic Characterization. Food Technol. Biotechnol. 2019, 57, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Scotti, G.; Nilsson, S.M.; Matilainen, V.-P.; Haapala, M.; Gennäs, G.B.A.; Yli-Kauhaluoma, J.; Salminen, A.; Kotiaho, T. Simple 3D printed stainless steel microreactors for online mass spectrometric analysis. Heliyon 2019, 5, e02002. [Google Scholar] [CrossRef]
- Shin, W.C.; Besser, R.S. A micromachined thin-film gas flow sensor for microchemical reactors. J. Micromech. Microeng. 2006, 16, 731–741. [Google Scholar] [CrossRef]
- Yoshiaki, T.; Minako, T.; Tomomi, A.; Katsumi, I. Micro Flow Sensor for Microreactor. Yokogawa Technical Report English Edition, 47. 2009. Available online: https://web-material3.yokogawa.com/rd-tr-r00047-010.pdf (accessed on 24 July 2024).
- Yao, F.; Xu, P.; Li, M.; Wang, X.; Jia, H.; Chen, Y.; Li, X. Microreactor-Based TG−TEM Synchronous Analysis. Anal. Chem. 2022, 94, 9009–9017. [Google Scholar] [CrossRef]
- Trumbull, J.; Glasgow, I.; Beebe, D.; Magin, R. Monitoring of chemical reactions within microreactors using an inverted Raman microscopic spectrometer. Electrophoresis 2003, 24, 3239–3245. [Google Scholar] [CrossRef]
- Trumbull, J.D.; Glasgow, I.K.; Beebe, D.J.; Magin, R.L. Integrating Microfabricated Fluidic Systems and NMR Spectroscopy. Trans. Biomed. Eng. 2000, 47, 3–7. [Google Scholar] [CrossRef]
- Gokay, O.; Albert, K. From single to multiple microcoil flow probe NMR and related capillary techniques: A review. Anal. Bioanal. Chem. 2012, 402, 647–669. [Google Scholar] [CrossRef] [PubMed]
- Massin, C.; Vincent, F.; Homsy, A.; Ehrmann, K.; Boero, G.; Besse, P.-A.; Daridon, A.; Verpoorte, E.; de Rooij, N.; Popovic, R. Planar microcoil-based microfluidic NMR probes. J. Magn. Reson. 2003, 164, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.; Shu, X.-Z.; Alayoglu, S.; Bechtel, H.A.; Martin, M.C.; Toste, F.D.; Somorjai, G.A. In Situ IR and X-ray High Spatial-Resolution MicrospectroscopyMeasurements of Multistep Organic Transformation in FlowMicroreactor Catalyzed by Au Nanoclusters. J. Am. Chem. Soc. 2014, 136, 3624–3629. [Google Scholar] [CrossRef]
- McDaniel, J.; Baez, A.; Crites, B.; Tammewar, A.; Brisk, P. Design and verification tools for continuous fluid flow-based microfluidic devices. In Proceedings of the 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC), Yokohama, Japan, 22–25 January 2013; pp. 219–224. [Google Scholar] [CrossRef]
- Sanka, R.; Crites, B.; McDaniel, J.; Brisk, P.; Densmore, D. Specification, Integration, and Benchmarking of Continuous Flow Microfluidic Devices. In Proceedings of the 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), Westminster, CO, USA, 4–7 November 2019; pp. 1–8. [Google Scholar] [CrossRef]
- McDaniel, J.; Grover, W.H.; Brisk, P. The case for semi-automated design of microfluidic very large scale integration (mVLSI) chips in Design. In Proceedings of the Automation Test in Europe Conference Exhibition (DATE) 2017, Lausanne, Switzerland, 27–31 March 2017; pp. 1793–1798. [Google Scholar] [CrossRef]
- Sanka, R.; Lippai, J.; Samarasekera, D.; Nemsick, S.; Densmore, D. 3DµF—Interactive Design Environment for Continuous Flow Microfluidic Devices. Sci. Rep. 2019, 9, 9166. [Google Scholar] [CrossRef]
- Lashkaripour, A.; Rodriguez, C.; Mehdipour, N.; Mardian, R.; McIntyre, D.; Ortiz, L.; Campbell, J.; Densmore, D. Machine learning enables design automation of microfluidic flow-focusing droplet generation. Nat. Commun. 2012, 12, 25. [Google Scholar] [CrossRef]
- Rizkin, B.A.; Hartman, R.L. Supervised machine learning for prediction of zirconocene-catalyzed α-olefin polymerization. Chem. Eng. Sci. 2019, 210, 115224. [Google Scholar] [CrossRef]
- Dressler, O.J.; Howes, P.D.; Choo, J.; Demello, A.J. Reinforcement Learning for Dynamic Microfluidic Control. ACS Omega 2018, 3, 10084–10091. [Google Scholar] [CrossRef]
- Schweidtmann, A.M.; Clayton, A.D.; Holmes, N.; Bradford, E.; Bourne, R.A.; Lapkin, A.A. Machine learning meets continuous flow chemistry: Automated optimization towards the Pareto front of multiple objectives. Chem. Eng. J. 2018, 352, 277–282. [Google Scholar] [CrossRef]
- Mekki-Berrada, F.; Ren, Z.; Huang, T.; Wong, W.K.; Zheng, F.; Xie, J.; Tian, I.P.S.; Jayavelu, S.; Mahfoud, Z.; Bash, D.; et al. Two-step machine learning enables optimized nanoparticle synthesis. npj Comput. Mater. 2021, 7, 55. [Google Scholar] [CrossRef]
- Romero, N.A.; Nicewicz, D.A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–10166. [Google Scholar] [CrossRef] [PubMed]
- Coley, C.W.; Abolhasani, M.; Lin, H.; Jensen, K.F. Material-Efficient Microfluidic Platform for Exploratory Studies of Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2017, 56, 9847–9850. [Google Scholar] [CrossRef] [PubMed]
- Mo, Y.; Rughoobur, G.; Nambiar, A.M.K.; Zhang, K.; Jensen, K.F. A Multifunctional Microfluidic Platform for High-Throughput Experimentation of Electrooganic Chemistry. Angew. Chem. Int. Ed. 2020, 59, 20890–20894. [Google Scholar] [CrossRef] [PubMed]
- Perera, D.; Tucker, J.W.; Brahmbhatt, S.; Helal, C.J.; Chong, A.; Farrell, W.; Richardson, P.; Sach, N.W. A platform for automated nanomole-scale reaction screening and micromolescale synthesis in flow. Science 2018, 359, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Shen, Y.; Lignos, I.; Bawendi, M.G.; Jensen, K.F. Multistage Microfluidic Platform for the Continuous Synthesis of III–V Core/Shell Quantum Dots. Angew. Chem. Int. Ed. 2018, 57, 10915–10918. [Google Scholar] [CrossRef]
- Presnova, G.; Presnov, D.; Krupenin, V.; Grigorenko, V.; Trifonov, A.; Andreeva, I.; Ignatenko, O.; Egorov, A.; Rubtsova, M. Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosens. Bioelectron. 2017, 88, 283–289. [Google Scholar] [CrossRef]
- Iwasaki, T.; Yoshida, J.-I. Free Radical Polymerization in Microreactors. Significant Improvement in Molecular Weight Distribution Control. Macromolecules 2005, 38, 1159–1163. [Google Scholar] [CrossRef]
- Wenn, B.; Junkers, T. Continuous Microflow PhotoRAFT Polymerization. Macromolecules 2016, 49, 6888–6895. [Google Scholar] [CrossRef]
- Mozharov, S.; Nordon, A.; Littlejohn, D.; Wiles, C.; Watts, P.; Dallin, P.; Girkin, J.M. Improved Method for Kinetic Studies in Microreactors Using Flow Manipulation and Noninvasive Raman Spectrometry. J. Am. Chem. Soc. 2011, 133, 3601–3608. [Google Scholar] [CrossRef]
- Moore, J.S.; Jensen, K.F. “Batch” Kinetics in Flow: Online IR Analysis and Continuous Control. Angew. Chem. Int. Ed. 2014, 53, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Hone, C.A.; Holmes, N.; Akien, G.R.; Bourne, R.A.; Muller, F.L. Rapid multistep kinetic model generation from transient flow data. React. Chem. Eng. 2017, 2, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Fath, V.; Lau, P.; Greve, C.; Kockmann, N.; Röder, T. Efficient Kinetic Data Acquisition and Model Prediction: Continuous Flow Microreactors, Inline Fourier Transform Infrared Spectroscopy, and Self-Modeling Curve Resolution. Org. Process Res. Dev. 2020, 24, 1955–1968. [Google Scholar] [CrossRef]
- Wyvratt, B.M.; McMullen, J.P.; Grosser, S.T. Multidimensional dynamic experiments for data-rich process development of reactions in flow. React. Chem. Eng. 2019, 4, 1637–1645. [Google Scholar] [CrossRef]
- Waldron, C.; Pankajakshan, A.; Quaglio, M.; Cao, E.; Galvanin, F.; Gavriilidis, A. An autonomous microreactor platform for the rapid identification of kinetic models. React. Chem. Eng. 2019, 4, 1623–1636. [Google Scholar] [CrossRef]
- Taylor, C.J.; Booth, M.; Manson, J.A.; Willis, M.J.; Clemens, G.; Taylor, B.A.; Chamberlain, T.W.; Bourne, R.A. Rapid, automated determination of reaction models and kinetic parameters. Chem. Eng. J. 2021, 413, 127017. [Google Scholar] [CrossRef]
- Taylor, C.J.; Seki, H.; Dannheim, F.M.; Willis, M.J.; Clemens, G.; Taylor, B.A.; Chamberlain, T.W.; Bourne, R.A. An automated computational approach to kinetic model discrimination and parameter estimation. React. Chem. Eng. 2021, 6, 1404–1411. [Google Scholar] [CrossRef]
- Haas, C.P.; Biesenroth, S.; Buckenmaier, S.; van de Goor, T.; Tallarek, U. Automated generation of photochemical reaction data by transient flow experiments coupled with online HPLC analysis. React. Chem. Eng. 2020, 5, 912–920. [Google Scholar] [CrossRef]
- Hone, C.A.; Kappe, C.O. Towards the Standardization of Flow Chemistry Protocols for Organic Reactions. Chem.—Methods 2021, 1, 454–467. [Google Scholar] [CrossRef]
- Fitzpatrick, D.E.; Ley, S.V. Engineering chemistry: Integrating batch and flow reactions on a single, automated reactor platform. React. Chem. Eng. 2016, 1, 629–635. [Google Scholar] [CrossRef]
- Cherkasov, N.; Bai, Y.; Expósito, A.J.; Rebrov, E.V. OpenFlowChem—A platform for quick, robust and flexible automation and self-optimisation of flow chemistry. React. Chem. Eng. 2018, 5, 769–780. [Google Scholar] [CrossRef]
- Kong, D.S.; A Thorsen, T.; Babb, J.; Wick, S.T.; Gam, J.J.; Weiss, R.; A Carr, P. Open-source, community-driven microfluidics with Metafluidics. Nat. Biotechnol. 2017, 35, 523–529. [Google Scholar] [CrossRef]
Method | Material | Resolution | Application | Characteristics | Ref. |
---|---|---|---|---|---|
Lithography and etching techniques | Silicon, Glass | 100 μm~100 nm | Fine flow channels | Compatibility with semiconductor technology, chemical resistance, heat resistance, robustness | [31] |
Imprint molding | Silicone, Glass | 100 μm~10 μm | Chemical reaction, Chemical analysis | Resin mold, metallic mold, optical transparency | [32] |
Precision machining techniques | Glass, Metal | 1 mm~10 μm | Chemical reaction | Corrosion resistance, thermal conductivity, chemical resistance, heat resistance, robustness | [33] |
3D printing technique | Resin, Metal | 1 mm~10 μm | Packaging | 3D structures | [34,35,36] |
Deployment | Method | Monitoring Targets | Ref. |
---|---|---|---|
In situ | Electrochemical detection | Gas, Liquid | [37,38] |
TG-TEM * | Inorganic, metallic nanoparticles | [39] | |
Detection from outside | X-ray absorption | Metallic nanoparticles | [40] |
NMR | Organic materials | [41,42,43] | |
Optical detection | Organic materials | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, T.; Masuda, K.; Sano, C.; Matsumoto, K.; Numata, H.; Munetoh, S.; Kasama, T.; Miyake, R. Democratizing Microreactor Technology for Accelerated Discoveries in Chemistry and Materials Research. Micromachines 2024, 15, 1064. https://doi.org/10.3390/mi15091064
Sato T, Masuda K, Sano C, Matsumoto K, Numata H, Munetoh S, Kasama T, Miyake R. Democratizing Microreactor Technology for Accelerated Discoveries in Chemistry and Materials Research. Micromachines. 2024; 15(9):1064. https://doi.org/10.3390/mi15091064
Chicago/Turabian StyleSato, Tomomi, Koji Masuda, Chikako Sano, Keiji Matsumoto, Hidetoshi Numata, Seiji Munetoh, Toshihiro Kasama, and Ryo Miyake. 2024. "Democratizing Microreactor Technology for Accelerated Discoveries in Chemistry and Materials Research" Micromachines 15, no. 9: 1064. https://doi.org/10.3390/mi15091064
APA StyleSato, T., Masuda, K., Sano, C., Matsumoto, K., Numata, H., Munetoh, S., Kasama, T., & Miyake, R. (2024). Democratizing Microreactor Technology for Accelerated Discoveries in Chemistry and Materials Research. Micromachines, 15(9), 1064. https://doi.org/10.3390/mi15091064