Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fabrication of Hybrid Bilayer Composite
2.3. Characterization and Test Conditions
3. Results and Discussion
3.1. Percolation Threshold of PDMS-CNT and PDMS-CB
3.2. Analysis of Joule Heating and TCR Change
3.3. Analysis of CNT and CB Content of Z-TCR Hybrid Composite
3.4. Bilayer Hybrid Composite Joule Heating Characteristics
3.5. Verification of Safety and Application in Thermotherapy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hickey, B.A.; Chalmers, T.; Newton, P.; Lin, C.-T.; Sibbritt, D.; McLachlan, C.S.; Clifton-Bligh, R.; Morley, J.; Lal, S. Smart devices and wearable technologies to detect and monitor mental health conditions and stress: A systematic review. Sensors 2021, 21, 3461. [Google Scholar] [CrossRef]
- Channa, A.; Popescu, N.; Skibinska, J.; Burget, R. The rise of wearable devices during the COVID-19 pandemic: A systematic review. Sensors 2021, 21, 5787. [Google Scholar] [CrossRef] [PubMed]
- Bayoumy, K.; Gaber, M.; Elshafeey, A.; Mhaimeed, O.; Dineen, E.H.; Marvel, F.A.; Martin, S.S.; Muse, E.D.; Turakhia, M.P.; Tarakji, K.G.; et al. Smart wearable devices in cardiovascular care: Where we are and how to move forward. Nat. Rev. Cardiol. 2021, 18, 581–599. [Google Scholar] [CrossRef] [PubMed]
- Vijayan, V.; Connolly, J.P.; Condell, J.; McKelvey, N.; Gardiner, P. Review of wearable devices and data collection considerations for connected health. Sensors 2021, 21, 5589. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.H.; Aydin, A.; Brunckhorst, O.; Dasgupta, P.; Ahmed, K. A review of wearable technology in medicine. J. R. Soc. Med. 2016, 109, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Mahmud, S.; Muhammad, L.; Islam, M.R.; Nooruddin, S.; Ayon, S.I. Wearable technology to assist the patients infected with novel coronavirus (COVID-19). SN Comput. Sci. 2020, 1, 320. [Google Scholar] [CrossRef] [PubMed]
- Gong, M.; Wan, P.; Ma, D.; Zhong, M.; Liao, M.; Ye, J.; Shi, R.; Zhang, L. Flexible breathable nanomesh electronic devices for on-demand therapy. Adv. Funct. Mater. 2019, 29, 1902127. [Google Scholar] [CrossRef]
- Shin, S.; Choi, H.-H.; Kim, Y.B.; Hong, B.-H.; Lee, J.-Y. Evaluation of body heating protocols with graphene heated clothing in a cold environment. Int. J. Cloth. Sci. Technol. 2017, 29, 830–844. [Google Scholar] [CrossRef]
- Scott, R.A. The technology of electrically heated clothing. Ergonomics 1988, 31, 1065–1081. [Google Scholar] [CrossRef]
- Park, J. Functional fibers, composites and textiles utilizing photothermal and joule heating. Polymers 2020, 12, 189. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, Z.; Mao, G.; Liu, Y.; Liu, G.; Shang, J.; Qu, S.; Chen, Q.; Li, R. Printable liquid-metal@ PDMS stretchable heater with high stretchability and dynamic stability for wearable thermotherapy. Adv. Mater. Technol. 2019, 4, 1800435. [Google Scholar] [CrossRef]
- An, B.W.; Gwak, E.-J.; Kim, K.; Kim, Y.-C.; Jang, J.; Kim, J.-Y.; Park, J.-U. Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Lett. 2016, 16, 471–478. [Google Scholar] [CrossRef]
- Berliner, M.N.; Maurer, A.I. Effect of different methods of thermotherapy on skin microcirculation. Am. J. Phys. Med. Rehabil. 2004, 83, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.; Scholz, R.; Maier-Hauff, K.; van Landeghem, F.K.; Waldoefner, N.; Teichgraeber, U.; Pinkernelle, J.; Bruhn, H.; Neumann, F.; Thiesen, B.J.; et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J. Neuro-Oncol. 2006, 78, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.; Jun, S.; Park, S.; Jung, S.; Shin, T.; Yoon, H. A research for evaluation on stress change via thermotherapy and massage. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, USA, 20–25 August 2008; pp. 4820–4823. [Google Scholar]
- Bito, T.; Suzuki, Y.; Kajiwara, Y.; Zeidan, H.; Harada, K.; Shimoura, K.; Tatsumi, M.; Nakai, K.; Nishida, Y.; Yoshimi, S.; et al. Effects of deep thermotherapy on chest wall mobility of healthy elderly women. Electromagn. Biol. Med. 2020, 39, 123–128. [Google Scholar] [CrossRef]
- Brosseau, L.; Yonge, K.; Welch, V.; Marchand, S.; Judd, M.; Wells, G.A.; Tugwell, P.; Cochrane Musculoskeletal Group. Thermotherapy for treatment of osteoarthritis. Cochrane Database Syst. Rev. 1996, 2011. [Google Scholar] [CrossRef] [PubMed]
- Welch, V.; Brosseau, L.; Casimiro, L.; Judd, M.; Shea, B.; Tugwell, P.; Wells, G.A.; Cochrane Musculoskeletal Group. Thermotherapy for treating rheumatoid arthritis. Cochrane Database Syst. Rev. 1996, 2011. [Google Scholar] [CrossRef] [PubMed]
- Bayata, S.; Türel Ermertcan, A.J.C.; Toxicology, O. Thermotherapy in dermatology. Cutan. Ocul. Toxicol. 2012, 31, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Doherty, C.B.; Doherty, S.D.; Rosen, T. Thermotherapy in dermatologic infections. J. Am. Acad. Dermatol. 2010, 62, 909–927. [Google Scholar] [CrossRef]
- Kim, H.; Seo, M.; Kim, J.W.; Kwon, D.K.; Choi, S.E.; Kim, J.W.; Myoung, J. Highly stretchable and wearable thermotherapy pad with micropatterned thermochromic display based on Ag nanowire–single-walled carbon nanotube composite. Adv. Funct. Mater. 2019, 29, 1901061. [Google Scholar] [CrossRef]
- Kang, J.; Kim, H.; Kim, K.S.; Lee, S.-K.; Bae, S.; Ahn, J.-H.; Kim, Y.-J.; Choi, J.-B.; Hong, B.H. High-performance graphene-based transparent flexible heaters. Nano Lett. 2011, 11, 5154–5158. [Google Scholar] [CrossRef] [PubMed]
- Sui, D.; Huang, Y.; Huang, L.; Liang, J.; Ma, Y.; Chen, Y. Flexible and transparent electrothermal film heaters based on graphene materials. Small 2011, 7, 3186–3192. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.-H.; Song, J.-W.; Kim, J.; Kim, D.; Park, J.-K.; Oh, S.-K.; Han, C.-S. Transparent film heater using single-walled carbon nanotubes. Adv. Mater. 2007, 19, 4284–4287. [Google Scholar] [CrossRef]
- Roy, N.; Sengupta, R.; Bhowmick, A.K. Modifications of carbon for polymer composites and nanocomposites. Prog. Polym. Sci. 2012, 37, 781–819. [Google Scholar] [CrossRef]
- Miyasaka, K.; Watanabe, K.; Jojima, E.; Aida, H.; Sumita, M.; Ishikawa, K. Electrical conductivity of carbon-polymer composites as a function of carbon content. J. Mater. Sci. 1982, 17, 1610–1616. [Google Scholar] [CrossRef]
- Zhang, W.; Dehghani-Sanij, A.A.; Blackburn, R.S. Carbon based conductive polymer composites. J. Mater. Sci. 2007, 42, 3408–3418. [Google Scholar] [CrossRef]
- Sichel, E.K.; Gittleman, J.I.; Sheng, P. Electrical properties of carbon-polymer composites. J. Electron. Mater. 1982, 11, 699–747. [Google Scholar] [CrossRef]
- Medalia, A.I. Electrical conduction in carbon black composites. Rubber Chem. Technol. 1986, 59, 432–454. [Google Scholar] [CrossRef]
- Marinho, B.; Ghislandi, M.; Tkalya, E.; Koning, C.E.; de With, G. Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol. 2012, 221, 351–358. [Google Scholar] [CrossRef]
- Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401. [Google Scholar] [CrossRef]
- Neitzert, H.C.; Vertuccio, L.; Sorrentino, A. Epoxy/MWCNT composite as temperature sensor and electrical heating element. IEEE Trans. Nanotechnol. 2010, 10, 688–693. [Google Scholar] [CrossRef]
- Rahaman, M.; Chaki, T.K.; Khastgir, D. Control of the temperature coefficient of the DC resistivity in polymer-based composites. J. Mater. Sci. 2013, 48, 7466–7475. [Google Scholar] [CrossRef]
- Singh, K.; Alvi, P. Influence of the pressure range on temperature coefficient of resistivity (TCR) for polysilicon piezoresistive MEMS pressure sensor. Phys. Scr. 2020, 95, 075005. [Google Scholar]
- Chu, K.; Lee, S.-C.; Lee, S.; Kim, D.; Moon, C.; Park, S.-H. Smart conducting polymer composites having zero temperature coefficient of resistance. Nanoscale 2015, 7, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Darkhaneh, H. Measurement error caused by self-heating in NTC and PTC thermistors. Tex. Instrum. Analog. Des. J. Q. 2019, 3, 001–007. [Google Scholar]
- Huybrechts, B.; Ishizaki, K.; Takata, M. The positive temperature coefficient of resistivity in barium titanate. J. Mater. Sci. 1995, 30, 2463–2474. [Google Scholar] [CrossRef]
- Feteira, A. Negative temperature coefficient resistance (NTCR) ceramic thermistors: An industrial perspective. J. Am. Ceram. Soc. 2009, 92, 967–983. [Google Scholar] [CrossRef]
- Benhamou, N.; Cohen, S.Y.; Erginay, A.; Uzzan, J.; Brasseur, G.; Avni, I.; Gaudric, A. Macular burn after transpupillary thermotherapy for occult choroidal neovascularization. Arch. Ophthalmol. 2004, 137, 1132–1135. [Google Scholar] [CrossRef]
- Ahumada, J.A.P.; de la Rosa, J.; Salas, R.A.M.; Medina, L. A proposed method to assure the efficiency of thermotherapy treatments. AIP Conf. Proc. 2021, 2348, 040006. [Google Scholar]
- Dooley, W.C.; Vargas, H.I.; Fenn, A.J.; Tomaselli, M.B.; Harness, J.K. Focused microwave thermotherapy for preoperative treatment of invasive breast cancer: A review of clinical studies. Ann. Surg. Oncol. 2010, 17, 1076–1093. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Yang, W.; Sim, J.; Suh, D.; Baik, S.; Baik, B. The mechanism of low temperature burn and clinical cases. J. Korean Burn. Soc. 2015, 18, 74–80. [Google Scholar]
- Leach, E.; Peters, R.; Rossiter, R.J. Experimental thermal burns, especially the moderate temperature burn. Q. J. Exp. Physiol. Cogn. Med. Sci. Transl. Integr. 1943, 32, 67–86. [Google Scholar] [CrossRef]
- Zhu, W.-B.; Xue, S.-S.; Zhang, H.; Wang, Y.-Y.; Huang, P.; Tang, Z.-H.; Li, Y.-Q.; Fu, S.-Y. Direct ink writing of a graphene/CNT/silicone composite strain sensor with a near-zero temperature coefficient of resistance. J. Mater. Chem. C 2022, 10, 8226–8233. [Google Scholar] [CrossRef]
- Laukkanen, T.; Reddy, P.G.; Barua, A.; Kumar, M.; Kolpakov, K.; Tirri, T.; Sharma, V. Sustainable castor oil-derived cross-linked poly (ester-urethane) elastomeric films for stretchable transparent conductive electrodes and heaters. J. Mater. Chem. A 2024, 12, 33177–33192. [Google Scholar] [CrossRef]
- Reddy, P.G.; Barua, A.; Laukkanen, T.; Mostafiz, B.; Tirri, T.; Vainio, A.; Sharma, V. Sustainable cross-linked poly (glycerol–co–δ–valerolactone) urethane substrates and multipurpose transparent electrodes for wearable electronics. Chem. Eng. J. 2024, 495, 153531. [Google Scholar] [CrossRef]
- Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 1973, 45, 574. [Google Scholar] [CrossRef]
- Chu, K.; Park, S.-H. Electrical heating behavior of flexible carbon nanotube composites with different aspect ratios. J. Ind. Eng. Chem. 2016, 35, 195–198. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, J.-Y.; Lee, D.-K.; Kim, M.-G.; Kim, W.-J.; Park, S.-H. Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads. Micromachines 2025, 16, 108. https://doi.org/10.3390/mi16010108
Ahn J-Y, Lee D-K, Kim M-G, Kim W-J, Park S-H. Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads. Micromachines. 2025; 16(1):108. https://doi.org/10.3390/mi16010108
Chicago/Turabian StyleAhn, Ji-Yoon, Dong-Kwan Lee, Min-Gi Kim, Won-Jin Kim, and Sung-Hoon Park. 2025. "Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads" Micromachines 16, no. 1: 108. https://doi.org/10.3390/mi16010108
APA StyleAhn, J.-Y., Lee, D.-K., Kim, M.-G., Kim, W.-J., & Park, S.-H. (2025). Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads. Micromachines, 16(1), 108. https://doi.org/10.3390/mi16010108