A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study
Abstract
:1. Introduction
2. Working Principle and Design
3. Proof-of-Concept Prototyping
3.1. Scanner Device
3.2. Actuator Controller
4. Results
4.1. Stepping-Mode Test
4.2. High-Speed-Mode Test
4.3. Thermal Characterization
4.4. Preliminary Optical Test
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaur, M.; Lane, P.M.; Menon, C. Endoscopic Optical Imaging Technologies and Devices for Medical Purposes: State of the Art. Appl. Sci. 2020, 10, 6865. [Google Scholar] [CrossRef]
- He, Z.; Wang, P.; Ye, X. Novel endoscopic optical diagnostic technologies in medical trial research: Recent advancements and future prospects. BioMed. Eng. Online 2021, 1, 5. [Google Scholar] [CrossRef]
- Reavis, K.M.; Melvin, W.S. Advanced endoscopic technologies. Surg. Endosc. 2008, 22, 1533–1546. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, M.; Yang, L.; Zhang, Y.; Yuan, J.; Liu, Q.; Hou, X.; Fu, L. A Confocal Endoscope for Cellular Imaging. Engineering 2015, 1, 351–360. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, Z.; Li, S.C. Functional Endoscopy Techniques for Tracking Stem Cell Fate. Quant. Imaging Med. Surg. 2019, 9, 510–520. [Google Scholar] [CrossRef]
- Shah, H.; Shejol, S.R.; Jhala, M.D. Cardiac imaging: OCT. Ind. J. Cardiovasc. Dis. Wom. 2019, 4, 158–164. [Google Scholar] [CrossRef]
- Rylski, B.; Siepe, M. Endoscopic treatment for delayed cardiac tamponade. Eur. J. Cardiothorac. Surg. 2010, 37, 490–491. [Google Scholar] [CrossRef] [PubMed]
- White, J.R.; Banks, M. Identifying the pre-malignant stomach: From guidelines to practice. Transl. Gastroenterol. Hepatol. 2022, 7, 8. [Google Scholar] [CrossRef]
- Hong, S.M.; Baek, D.H. A Review of Colonoscopy in Intestinal Diseases. Diagnostics 2023, 13, 1262. [Google Scholar] [CrossRef] [PubMed]
- Ramai, D.; Pannu, V.; Facciorusso, A.; Dhindsa, B.; Heaton, J.; Ofosu, A.; Chandan, S.; Maida, M.; Lattanzi, B.; Rodriguez, E.; et al. Advances in Endoscopic Ultrasound (EUS)-Guided Liver Biopsy. Diagnostics 2023, 13, 784. [Google Scholar] [CrossRef]
- Giovannini, M. Ultrasound-guided endoscopic surgery. Best Pract. Res. Clin. Gastroenterol. 2004, 18, 183–200. [Google Scholar] [CrossRef]
- Kantsevoy, S.V.; Adler, D.G.; Conway, J.; Diehl, D.L.; Farraye, F.A.; Kaul, V.; Kethu, S.R.; Kwon, R.S.; Mamula, P.; Rodriguez, S.A.; et al. Confocal Laser Endomicroscopy. Gastrointest. Endosc. 2009, 70, 197–200. [Google Scholar] [CrossRef]
- Drexler, W.; Fujimoto, J.G. Optical Coherence Tomography: Technology and Applications; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2008. [Google Scholar]
- Liang, C.P.; Dong, J.; Ford, T.; Reddy, R.; Hosseiny, H.; Farrokhi, H.; Beatty, M.; Singh, K.; Osman, H.; Vuong, B.; et al. Optical coherence tomography-guided laser marking with tethered capsule endomicroscopy in unsedated patients. Biomed. Opt. Express 2019, 10, 1207–1222. [Google Scholar] [CrossRef]
- Shiroshita, H.; Inomata, M.; Akira, S.; Kanayama, H.; Yamaguchi, S.; Eguchi, S.; Wada, N.; Kurokawa, Y.; Uchida, H.; Seki, Y.; et al. Current Status of Endoscopic Surgery in Japan: The 15th National Survey of Endoscopic Surgery by the Japan Society for Endoscopic Surgery. Asian J. Endosc. Surg. 2022, 15, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Kiesslich, R.; Goetz, M.; Hoffman, A.; Galle, P.R. New imaging techniques and opportunities in endoscopy. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, Z.; Chen, J.J.; Jing, J.C.; Sun, C.H.; Kim, S.; Chung, P.S.; Chen, Z. Multimodal endoscopy for colorectal cancer detection by optical coherence tomography and near-infrared fluorescence imaging. Biomed. Opt. Express 2019, 10, 2419–2429. [Google Scholar] [CrossRef]
- Schie, I.W.; Stiebing, C.; Popp, J. Looking for a perfect match : Multimodal combinations of Raman spectroscopy for biomedical applications. J. Biomed. Opt. 2021, 26, 080601. [Google Scholar] [CrossRef]
- Krieger, A.; Susil, R.C.; Menard, C.; Coleman, J.A.; Fichtinger, G.; Atalar, E.; Whitcomb, L.L. Design of a Novel MRI Compatible Manipulator for Image Guided Prostate Interventions. IEEE Trans. Biomed. Eng. 2005, 52, 306–313. [Google Scholar] [CrossRef]
- Pshenay-Severin, E.; Bae, H.; Reichwald, K.; Matz, G.; Bierlich, J.; Kobelke, J.; Lorenz, A.; Schwuchow, A.; Meyer-Zedler, T.; Schmitt, M. Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept. Light Sci. Appl. 2021, 10, 207. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, N.; Yamashita, H.; Masamune, K.; Chiba, T.; Dohi, T. An Endoscope with 2 DOFs Steering of Coaxial Nd: YAG Laser Beam for Fetal Surgery. IEEE/ASME Trans. Mechatron. 2010, 15, 898–905. [Google Scholar]
- Wu, Y.; Zhang, Y.; Xi, J.; Li, M.; Li, X. Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation. J. Biomed. Opt. 2010, 15, 060506. [Google Scholar] [CrossRef]
- Lee, M.; Li, H.; Birla, M.B.; Li, G.; Wang, T.D.; Oldham, K.R. Capacitive Sensing for 2-D Electrostatic MEMS Scanner in a Clinical Endomicroscope. IEEE Sens. J. 2022, 22, 24493–24503. [Google Scholar] [CrossRef] [PubMed]
- Pengwang, E.; Rabenorosoa, K.; Rakotondrabe, M.; Andreff, N. Scanning Micromirror Platform Based on MEMS Technology for Medical Application. Micromachines 2016, 7, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yang, Z.; Liang, W.; Shang, J.; Liang, Y.; Wan, S. Low-cost, ultracompact handheld optical coherence tomography probe for in vivo oral maxillofacial tissue imaging. J. Biomed. Opt. 2020, 25, 046003. [Google Scholar] [CrossRef]
- Welge, W.A.; Barton, J.K. In vivo endoscopic Doppler optical coherence tomography imaging of the colon. Lasers Surg. Med. 2017, 49, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Choi, J.W.; Yun, S.H. 350-μm side-view optical probe for imaging the murine brain in vivo from the cortex to the hypothalamus. J. Biomed. Opt. 2013, 18, 050502. [Google Scholar] [CrossRef]
- Tsai, T.; Potsaid, B.; Tao, Y.K.; Jayaraman, V.; Jiang, J.; Heim, P.J.S.; Kraus, M.F.; Zhou, C.; Hornegger, J.; Mashimo, H.; et al. Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology. Biomed. Opt. Express 2013, 4, 1119–1132. [Google Scholar] [CrossRef]
- Niu, C.; Guan, Z.; Wu, W.; Zhu, Z.; Dai, C. Fast endoscopic OCTA imaging in mouse rectum using proximal scanning catheter. Proc. SPIE 2024, 12830, 128300E. [Google Scholar]
- Zhang, J.; Nguyen, T.; Potsaid, B.; Jayaraman, V.; Burgner, C.; Chen, S.; Li, J.; Liang, K.; Cable, A.; Traverso, G.; et al. Multi-MHz MEMS-VCSEL swept-source optical coherence tomography for endoscopic structural and angiographic imaging with miniaturized brushless motor probes. Biomed. Opt. Express 2021, 12, 2384–2403. [Google Scholar] [CrossRef] [PubMed]
- Gora, M.J.; Suter, M.J.; Tearney, G.J.; Li, X. Endoscopic optical coherence tomography: Technologies and clinical applications. Biomed. Opt. Express 2017, 8, 2405–2444. [Google Scholar] [CrossRef]
- Herz, P.R.; Chen, Y.; Aguirre, A.D.; Schneider, K.; Hsiung, P.; Fujimoto, J.G.; Madden, K.; Schmitt, J.; Goodnow, J.; Petersen, C. Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography. Opt. Lett. 2004, 29, 2261–2263. [Google Scholar] [CrossRef] [PubMed]
- Bart, S.F.; Mehregany, M.; Tavrow, L.S.; Lang, J.H.; Senturia, S.D. Electric Micromotor Dynamics. IEEE Trans. Electron Devices 1992, 39, 566–575. [Google Scholar] [CrossRef]
- Deng, K.; Ramanathan, G.P.; Mehregany, M. Micromotor dynamics in lubricating fluids. J. Micromech. Microeng. 1994, 4, 266–269. [Google Scholar] [CrossRef]
- Searles, K.; Shalabi, N.; Jayhooni, S.M.H.; Takahata, K. A planar micro rotary actuator for endoscopic optical scanning. Sens. Actuators A Phys. 2022, 345, 113768. [Google Scholar] [CrossRef]
- Jayhooni, S.M.H.; Hohert, G.; Assadsangabi, B.; Lane, P.M.; Zeng, H.; Takahata, K. A Side-Viewing Endoscopic Probe with Distal Micro Rotary Scanner for Multimodal Luminal Imaging and Analysis. J. Microelectromech. Syst. 2021, 30, 433–441. [Google Scholar] [CrossRef]
- Searles, K.; Shalabi, N.; Hohert, G.; Gharib, N.; Jayhooni, S.M.H.; Lane, P.M.; Takahata, K. Distal planar rotary scanner for endoscopic optical coherence tomography. Biomed. Eng. Lett. 2024, 14, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Ong, B.B.; Milne, N. Injury, fatal and nonfatal: Burns and scalds. Encycl. Forensic. Leg. Med. 2015, 3, 173–181. [Google Scholar]
- Jayhooni, S.M.H.; Assadsangabi, B.; Takahata, K. A stepping micromotor based on ferrofluid bearing for side-viewing microendoscope applications. Sens. Actuators A Phys. 2018, 269, 258–268. [Google Scholar] [CrossRef]
- Rha, J.J.; Kwon, S.C.; Cho, J.R.; Yim, S.; Saka, N. Creation of ultra-low friction and wear surfaces for micro-devices using carbon films. Wear 2005, 259, 765–770. [Google Scholar] [CrossRef]
- Liu, H.; Bhushan, B. Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM. Ultramicroscopy 2003, 97, 321–340. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharib, N.; Yousefi Darestani, M.R.; Takahata, K. A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study. Micromachines 2025, 16, 111. https://doi.org/10.3390/mi16010111
Gharib N, Yousefi Darestani MR, Takahata K. A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study. Micromachines. 2025; 16(1):111. https://doi.org/10.3390/mi16010111
Chicago/Turabian StyleGharib, Nirvana, Mohammad Reza Yousefi Darestani, and Kenichi Takahata. 2025. "A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study" Micromachines 16, no. 1: 111. https://doi.org/10.3390/mi16010111
APA StyleGharib, N., Yousefi Darestani, M. R., & Takahata, K. (2025). A Precessing-Coin-like Rotary Actuator for Distal Endoscope Scanners: Proof-of-Concept Study. Micromachines, 16(1), 111. https://doi.org/10.3390/mi16010111