Efficient Particle Manipulation Using Contraction–Expansion Microchannels Embedded with Hook-Shaped Arrays
Abstract
:1. Introduction
2. Basic Theory
2.1. Inertial Migration Theory
2.2. Secondary Flow
3. Materials and Methods
3.1. Device Design and Fabrication
3.2. Experimental Setup and Sample Preparation
4. Results and Discussion
4.1. Particle Migration Characterization
4.2. Applications of Hooked CEA Channels
4.2.1. Particle Trapping
4.2.2. Particle Focusing
4.2.3. Particle Separation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, T.L.; Hong, Z.Y.; Tang, S.Y.; Li, W.H.; Inglis, D.W.; Hosokawa, Y.; Yalikun, Y.; Li, M. Focusing of sub-micrometer particles in microfluidic devices. Lab Chip 2020, 20, 35–53. [Google Scholar] [PubMed]
- Toh, A.G.G.; Wang, Z.P.; Yang, C.; Nguyen, N.T. Engineering microfluidic concentration gradient generators for biological applications. Microfluid. Nanofluidics 2014, 16, 1–18. [Google Scholar]
- Zhang, B.R.; Yang, F.; Wu, W.S.; Wan, W.Y.; Zhao, W.H.; Zhao, Q.B. Investigation of particle manipulation mechanism and size sorting strategy in a double-layered microchannel. Lab Chip 2022, 22, 4556–4573. [Google Scholar]
- Han, Z.Z.; Peng, C.; Yi, J.; Zhang, D.X.; Xiang, X.W.; Peng, X.Y.; Su, B.; Liu, B.H.; Shen, Y.H.; Qiao, L. Highly efficient exosome purification from human plasma by tangential flow filtration based microfluidic chip. Sens. Actuat B-Chem. 2021, 333, 129563. [Google Scholar]
- Xuan, X.C. Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Electrophoresis 2019, 40, 2484–2513. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, H.; Han, S.I.; Han, K.H. Single-Cell Isolation of Circulating Tumor Cells from Whole Blood by Lateral Magnetophoretic Microseparation and Microfluidic Dispensing. Anal. Chem. 2016, 88, 4857–4863. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, M.R.; Lin, Y.; Xu, J. Acoustic Microfluidic Separation Techniques and Bioapplications: A Review. Micromachines 2020, 11, 921. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hu, X.G.; Hu, S.; Peng, Y. Applications of fiber-optic biochemical sensor in microfluidic chips: A review. Biosens. Bioelectron. 2020, 166, 112447. [Google Scholar]
- Preira, P.; Grandné, V.; Forel, J.M.; Gabriele, S.; Camara, M.; Theodoly, O. Passive circulating cell sorting by deformability using a microfluidic gradual filter. Lab Chip 2013, 13, 161–170. [Google Scholar] [CrossRef]
- Chun, M.S. Designing Microfluidic-Chip Filtration with Multiple Channel Networks for the Highly Efficient Sorting of Cell Particles. Micromachines 2024, 15, 1474. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, M.; Zhou, Y.N.; Tripathi, P.; Chandramohanadas, R.; Ai, Y. Exosome Purification and Analysis Using a Facile Microfluidic Hydrodynamic Trapping Device. Anal. Chem. 2020, 92, 10733–10742. [Google Scholar] [CrossRef]
- Pariset, E.; Pudda, C.; Boizot, F.; Verplanck, N.; Berthier, J.; Thuaire, A.; Agache, V. Anticipating Cutoff Diameters in Deterministic Lateral Displacement (DLD) Microfluidic Devices for an Optimized Particle Separation. Small 2017, 13, 1701901. [Google Scholar]
- Warkiani, M.E.; Khoo, B.L.; Wu, L.D.; Tay, A.K.P.; Bhagat, A.A.S.; Han, J.; Lim, C.T. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat. Protoc. 2016, 11, 134–148. [Google Scholar] [CrossRef] [PubMed]
- Sollier, E.; Go, D.E.; Che, J.; Gossett, D.R.; O’Byrne, S.; Weaver, W.M.; Kummer, N.; Rettig, M.; Goldman, J.; Nickols, N.; et al. Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip 2014, 14, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.Y.; Han, L.Z.; Shi, X.; Tan, W.; Cao, W.F.; Zhu, G.R. Hydrodynamic separation by changing equilibrium positions in contraction-expansion array channels. Microfluid. Nanofluidics 2019, 23, 52. [Google Scholar]
- Yao, J.; Chen, J.X.; Cao, X.D.; Dong, H. Combining 3D sidewall electrodes and contraction/expansion microstructures in microchip promotes isolation of cancer cells from red blood cells. Talanta 2019, 196, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Cha, H.T.; Fallahi, H.; Dai, Y.C.; Yadav, S.; Hettiarachchi, S.; McNamee, A.; An, H.J.; Xiang, N.; Nguyen, N.T.; Zhang, J. Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures. Lab Chip 2022, 22, 2789–2800. [Google Scholar] [PubMed]
- Li, M.; Muñoz, H.E.; Schmidt, A.; Guo, B.; Lei, C.; Goda, K.; Carlo, D. Inertial focusing of ellipsoidal Euglena gracilis cells in a stepped microchannel. Lab Chip 2016, 16, 4458–4465. [Google Scholar] [CrossRef]
- Fan, L.L.; He, X.K.; Han, Y.; Zhe, J.; Zhao, L. Continuous 3D particle focusing in a microchannel with curved and symmetric sharp corner structures. J. Micromech. Microeng. 2015, 25, 035020. [Google Scholar] [CrossRef]
- Fan, L.L.; Yan, Q.; Zhe, J.; Zhao, L. Single particle train ordering in microchannel based on inertial and vortex effects. J. Micromech. Microeng. 2018, 28, 065011. [Google Scholar] [CrossRef]
- Zhao, Q.B.; Yuan, D.; Yan, S.; Zhang, J.; Du, H.P.; Alici, G.; Li, W.H. Flow rate-insensitive microparticle separation and filtration using a microchannel with arc-shaped groove arrays. Microfluid. Nanofluidics 2017, 21, 55. [Google Scholar] [CrossRef]
- Huang, D.; Man, J.X.; Jiang, D.; Zhao, J.Y.; Xiang, N. Inertial microfluidics: Recent advances. Electrophoresis 2020, 41, 2166–2187. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.S.; Kwon, K.; Hyun, K.A.; Sim, T.S.; Park, J.C.; Lee, J.G.; Jung, H.I. Continual collection and re-separation of circulating tumor cells from blood using multi-stage multi-orifice flow fractionation. Biomicrofluidics 2013, 7, 014105. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, A.A.S.; Hou, H.W.; Li, L.D.; Lim, C.T.; Han, J.Y. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 2011, 11, 1870–1878. [Google Scholar] [CrossRef] [PubMed]
- Sim, T.S.; Kwon, K.; Park, J.C.; Lee, J.G.; Jung, H.I. Multistage-multiorifice flow fractionation (MS-MOFF): Continuous size-based separation of microspheres using multiple series of contraction/expansion microchannels. Lab Chip 2011, 11, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Chung, A.J.; Gossett, D.R.; Di Carlo, D. Three Dimensional, Sheathless, and High-Throughput Microparticle Inertial Focusing Through Geometry-Induced Secondary Flows. Small 2013, 9, 685–690. [Google Scholar] [CrossRef]
- Segre, G.; Silberberg, A. Behaviour of Macroscopic Rigid Spheres in Poiseuille Flow Part 2. Experimental Results and Interpretation. J. Fluid Mech. 1962, 14, 136–157. [Google Scholar] [CrossRef]
- Segre, G.; Silberberg, A. Behaviour of Macroscopic Rigid Spheres in Poiseuille Flow Part 1. Determination of Local Concentration by Statistical Analysis of Particle Passages through Crossed Light Beams. J. Fluid Mech. 1962, 14, 115–135. [Google Scholar] [CrossRef]
- Di Carlo, D. Inertial microfluidics. Lab Chip 2009, 9, 3038–3046. [Google Scholar]
- Asmolov, E.S. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 1999, 381, 63–87. [Google Scholar] [CrossRef]
- Chung, A.J. A Minireview on Inertial Microfluidics Fundamentals: Inertial Particle Focusing and Secondary Flow. BioChip J. 2019, 13, 53–63. [Google Scholar] [CrossRef]
- Ookawara, S.; Higashi, R.; Street, D.; Ogawa, K. Feasibility study on concentration of slurry and classification of contained particles by microchannel. Chem. Eng. J. 2004, 101, 171–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Zhao, Y.; Cao, C.; Zhao, J. Efficient Particle Manipulation Using Contraction–Expansion Microchannels Embedded with Hook-Shaped Arrays. Micromachines 2025, 16, 83. https://doi.org/10.3390/mi16010083
Huang D, Zhao Y, Cao C, Zhao J. Efficient Particle Manipulation Using Contraction–Expansion Microchannels Embedded with Hook-Shaped Arrays. Micromachines. 2025; 16(1):83. https://doi.org/10.3390/mi16010083
Chicago/Turabian StyleHuang, Di, Yan Zhao, Chao Cao, and Jiyun Zhao. 2025. "Efficient Particle Manipulation Using Contraction–Expansion Microchannels Embedded with Hook-Shaped Arrays" Micromachines 16, no. 1: 83. https://doi.org/10.3390/mi16010083
APA StyleHuang, D., Zhao, Y., Cao, C., & Zhao, J. (2025). Efficient Particle Manipulation Using Contraction–Expansion Microchannels Embedded with Hook-Shaped Arrays. Micromachines, 16(1), 83. https://doi.org/10.3390/mi16010083