Simulation and Experimental Study of the Single-Pulse Femtosecond Laser Ablation Morphology of GaN Films
Abstract
:1. Introduction
2. Modelling and Simulation
2.1. Principle Description
2.2. Simulation Details
2.3. Model by COMSOL Multiphysics®
Parameter | Symbol | Value |
---|---|---|
Boltzmann constant | kB | 1.380649 × 10−23 (J·K−1) |
Electron mobility | ue | 800(Tl/300)−1.5 (cm2·V−1·s−1) |
Bandgap energy | Eg | 3.39 (eV) |
Multiphoton absorption coefficient | δ3 | 0.011 (cm3·GW−2) |
Electronic constant volume heat capacity | Ce | 70Te (J·m−3·K−1) |
Electronic thermal conductivity | ke | 220Te/Tl (W·m−1·K−1) |
Original valence electron density | n0 | 2.8 × 1023 (m−3) |
3. Experimental
4. Results and Discussion
4.1. Experimental Ablation Threshold and Morphology
4.2. Ablation Morphology Prediction and Verification
4.3. Ablation Threshold Prediction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, M.; Simin, G.; Pytel, S.; Monti, A.; Santi, E.; Hudgins, J. New developments in gallium nitride and the impact on power electronics. In Proceedings of the 2005 IEEE 36th Power Electronics Specialists Conference, Dresden, Germany, 16 June 2005; pp. 15–26. [Google Scholar]
- Zhou, S.; Zheng, C.; Lv, J.; Gao, Y.; Wang, R.; Liu, S. GaN-based flip-chip LEDs with highly reflective ITO/DBR p-type and via hole-based n-type contacts for enhanced current spreading and light extraction. Opt. Laser Technol. 2017, 92, 95–100. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, S.; Pal, S.; Dhanavantri, C. Performances of p-side down vertical InGaN/GaN blue light-emitting diodes with chip size. Opt. Laser Technol. 2017, 95, 165–171. [Google Scholar] [CrossRef]
- Faucher, M.; Cordier, Y.; Werquin, M.; Buchaillot, L.; Gaquiere, C.; Theron, D. Electromechanical transconductance properties of a GaN MEMS resonator with fully integrated HEMT transducers. J. Microelectromech. Syst. 2012, 21, 370–378. [Google Scholar] [CrossRef]
- Li, S.; Sun, H.; Zhang, S.; Zhang, Y.; Wang, X.; Zhang, X.; Liu, T.; Guo, Z. Surface plasmon resonance on blue GaN-based VCSEL with Al-grating. Opt. Laser Technol. 2019, 113, 177–181. [Google Scholar] [CrossRef]
- Matioli, E.; Neufeld, C.; Iza, M.; Cruz, S.C.; Al-Heji, A.A.; Chen, X.; Farrell, R.M.; Keller, S.; DenBaars, S.; Mishra, U. High internal and external quantum efficiency InGaN/GaN solar cells. Appl. Phys. Lett. 2011, 98, 021102. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, Z.; Zhu, L.; Cheng, X.; Wang, J. Nano-grooves etching on top of GaN-LED for light extraction enhancement. Opt. Laser Technol. 2021, 138, 106842. [Google Scholar] [CrossRef]
- Yu, C.-C.; Chu, C.-F.; Tsai, J.-Y.; Huang, H.W.; Hsueh, T.-H.; Lin, C.-F.; Wang, S.-C. Gallium nitride nanorods fabricated by inductively coupled plasma reactive ion etching. Jpn. J. Appl. Phys. 2002, 41, L910. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, W. Free-standing GaN grating couplers and rib waveguide for planar photonics at telecommunication wavelength. Opt. Laser Technol. 2018, 98, 257–263. [Google Scholar] [CrossRef]
- Halstuch, A.; Westreich, O.; Sicron, N.; Ishaaya, A.A. Femtosecond laser inscription of Bragg gratings on a thin GaN film grown on a sapphire substrate. Opt. Lasers Eng. 2018, 109, 68–72. [Google Scholar] [CrossRef]
- Chen, Y.; Yuan, D.; Yang, M.; Wang, D.; Sun, X. High efficiency GaN LEDs with submicron-scale 2Dperiodic structures directly fabricated by laser interference ablation. Opt. Laser Technol. 2017, 90, 211–215. [Google Scholar] [CrossRef]
- Miyaji, G.; Miyazaki, K. Fabrication of 50-nm period gratings on GaN in air through plasmonic near-field ablation induced by ultraviolet femtosecond laser pulses. Opt. Express 2016, 24, 4648–4653. [Google Scholar] [CrossRef] [PubMed]
- Saleem, U.; Birowosuto, M.D.; Hou, S.; Maurice, A.; Kang, T.B.; Teo, E.H.T.; Tchernycheva, M.; Gogneau, N.; Wang, H. Light emission from localised point defects induced in GaN crystal by a femtosecond-pulsed laser. Opt. Mater. Express 2018, 8, 2703–2712. [Google Scholar] [CrossRef]
- Sundaram, S.; Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nat. Mater. 2002, 1, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, A.-D.; Li, B.; Cui, T.-H.; Lu, Y.-F. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: Modeling, method, measurement and application. Light Sci. Appl. 2018, 7, 17134. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Janulewicz, K.A. Structural transformations in femtosecond laser-processed n-type 4H-SiC. Appl. Surf. Sci. 2016, 385, 1–8. [Google Scholar] [CrossRef]
- Ueda, T.; Ishida, M.; Yuri, M. Separation of thin GaN from sapphire by laser lift-off technique. Jpn. J. Appl. Phys. 2011, 50, 041001. [Google Scholar] [CrossRef]
- Grinys, T.; Dmukauskas, M.; Ščiuka, M.; Nargelas, S.; Melninkaitis, A. Evolution of femtosecond laser-induced damage in doped GaN thin films. Appl. Phys. A 2014, 114, 381–385. [Google Scholar] [CrossRef]
- Jiang, L.; Tsai, H.-L. Prediction of crater shape in femtosecond laser ablation of dielectrics. J. Phys. D Appl. Phys. 2004, 37, 1492. [Google Scholar] [CrossRef]
- Jiang, L.; Tsai, H.-L. A plasma model combined with an improved two-temperature equation for ultrafast laser ablation of dielectrics. J. Appl. Phys. 2008, 104, 093101. [Google Scholar] [CrossRef]
- Guizard, S.; Semerok, A.; Gaudin, J.; Hashida, M.; Martin, P.; Quéré, F. Femtosecond laser ablation of transparent dielectrics: Measurement and modelisation of crater profiles. Appl. Surf. Sci. 2002, 186, 364–368. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, F.; Zhang, Y.; Xiong, X.; Ju, B.-F.; Cui, H.; Chen, Y.-L. Single-pulse femtosecond laser ablation of monocrystalline silicon: A modeling and experimental study. Appl. Surf. Sci. 2022, 576, 151722. [Google Scholar] [CrossRef]
- Hua, Y.; Zhang, Z.; Du, J.; Liang, X.; Zhang, W.; Cai, Y.; Wang, Q. Experimental and Simulation Research on Femtosecond Laser Induced Controllable Morphology of Monocrystalline SiC. Micromachines 2024, 15, 573. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Jiang, L.; Sun, J.; Pan, C.; Lian, Y.; Sun, J.; Wang, K.; Wang, Q.; Wang, J.; Lu, Y. One-step fabrication method of GaN films for internal quantum efficiency enhancement and their ultrafast mechanism investigation. ACS Appl. Mater. Interfaces 2021, 13, 7688–7697. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Ji, C.; Wang, Z.; Wang, S.; Pan, J.; Lei, C.; Liu, S. Ultrafast processes simulation under femtosecond laser irradiation of Gallium Nitride thin films. Comput. Mater. Sci. 2022, 214, 111627. [Google Scholar] [CrossRef]
- Bulgakova, N.; Stoian, R.; Rosenfeld, A.; Hertel, I.; Campbell, E. Electronic transport and consequences for material removal in ultrafast pulsed laser ablation of materials. Phys. Rev. B 2004, 69, 054102. [Google Scholar] [CrossRef]
- Cheng, Y.; Bulgakov, A.V.; Bulgakova, N.M.; Beránek, J.; Zukerstein, M.; Milekhin, I.A.; Popov, A.A.; Volodin, V.A. Ultrafast Infrared Laser Crystallization of Amorphous Ge Films on Glass Substrates. Micromachines 2023, 14, 2048. [Google Scholar] [CrossRef]
- Volodin, V.A.; Cheng, Y.; Bulgakov, A.V.; Levy, Y.; Beránek, J.; Nagisetty, S.S.; Zukerstein, M.; Popov, A.A.; Bulgakova, N.M. Single-shot selective femtosecond and picosecond infrared laser crystallization of an amorphous Ge/Si multilayer stack. Opt. Laser Technol. 2023, 161, 109161. [Google Scholar] [CrossRef]
- Martins, R.; Siqueira, J.; Manglano Clavero, I.; Margenfeld, C.; Fündling, S.; Vogt, A.; Waag, A.; Voss, T.; Mendonca, C.R. Carrier dynamics and optical nonlinearities in a GaN epitaxial thin film under three-photon absorption. J. Appl. Phys. 2018, 123, 243101. [Google Scholar] [CrossRef]
- Jiang, L.; Tsai, H.-L. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse. Int. J. Heat Mass Transf. 2005, 48, 487–499. [Google Scholar] [CrossRef]
- Boyd, G.; Kleinman, D. Parametric interaction of focused Gaussian light beams. J. Appl. Phys. 1968, 39, 3597–3639. [Google Scholar] [CrossRef]
- MacChesney, J.; Bridenbaugh, P.; O’connor, P. Thermal stability of indium nitride at elevated temperatures and nitrogen pressures. Mater. Res. Bull. 1970, 5, 783–791. [Google Scholar] [CrossRef]
- Vitanov, S. Simulation of High Electron Mobility Transistors. Doctoral Dissertation, Technische Universität Wien, Vienna, Austria, 2010. [Google Scholar]
- Melentev, G.; Yaichnikov, D.Y.; Shalygin, V.; Vinnichenko, M.Y.; Vorobjev, L.; Firsov, D.; Riuttanen, L.; Suihkonen, S. Plasmon phonon modes and optical resonances in n-GaN. J. Phys. Conf. Ser. 2016, 690, 012005. [Google Scholar] [CrossRef]
- Liu, J.-M. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 1982, 7, 196–198. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-M.; Feit, M.D.; Rubenchik, A.M.; Joslin, E.J.; Eichler, J.; Stoller, P.C.; Da Silva, L.B. Effects of high repetition rate and beam size on hard tissue damage due to subpicosecond laser pulses. Appl. Phys. Lett. 2000, 76, 4001–4003. [Google Scholar] [CrossRef]
- Sanner, N.; Bussiere, B.; Utéza, O.; Leray, A.; Itina, T.; Sentis, M.; Natoli, J.; Commandré, M. Influence of the beam-focus size on femtosecond laser-induced damage threshold in fused silica. Commer. Biomed. Appl. Ultrafast Lasers VIII 2008, 6881, 166–174. [Google Scholar]
- Molian, P.; Pecholt, B.; Gupta, S. Picosecond pulsed laser ablation and micromachining of 4H-SiC wafers. Appl. Surf. Sci. 2009, 255, 4515–4520. [Google Scholar] [CrossRef]
- Pecholt, B.; Vendan, M.; Dong, Y.; Molian, P. Ultrafast laser micromachining of 3C-SiC thin films for MEMS device fabrication. Int. J. Adv. Manuf. Technol. 2008, 39, 239–250. [Google Scholar] [CrossRef]
- Bennewitz, R.; Smith, D.; Reichling, M. Bulk and surface processes in low-energy-electron-induced decomposition of CaF2. Phys. Rev. B 1999, 59, 8237. [Google Scholar] [CrossRef]
- Rafique, M.S.; Bashir, S.; Husinsky, W.; Hobro, A.; Lendl, B. Surface analysis correlated with the Raman measurements of a femtosecond laser irradiated CaF2. Appl. Surf. Sci. 2012, 258, 3178–3183. [Google Scholar] [CrossRef]
- Bornemann, S.; Meyer, T.; Voss, T.; Waag, A. Ablation threshold of GaN films for ultrashort laser pulses and the role of threading dislocations as damage precursors. Opt. Express 2022, 30, 47744–47760. [Google Scholar] [CrossRef]
- Moser, R.; Domke, M.; Winter, J.; Huber, H.P.; Marowsky, G. Single pulse femtosecond laser ablation of silicon—A comparison between experimental and simulated two-dimensional ablation profiles. Adv. Opt. Technol. 2018, 7, 255–264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhang, T.; Yuan, Y.; Wang, Z.; Liu, Y.; Chen, L. Simulation and Experimental Study of the Single-Pulse Femtosecond Laser Ablation Morphology of GaN Films. Micromachines 2025, 16, 85. https://doi.org/10.3390/mi16010085
Wang M, Zhang T, Yuan Y, Wang Z, Liu Y, Chen L. Simulation and Experimental Study of the Single-Pulse Femtosecond Laser Ablation Morphology of GaN Films. Micromachines. 2025; 16(1):85. https://doi.org/10.3390/mi16010085
Chicago/Turabian StyleWang, Mingyuan, Tong Zhang, Yanping Yuan, Zhiyong Wang, Yanlei Liu, and Lin Chen. 2025. "Simulation and Experimental Study of the Single-Pulse Femtosecond Laser Ablation Morphology of GaN Films" Micromachines 16, no. 1: 85. https://doi.org/10.3390/mi16010085
APA StyleWang, M., Zhang, T., Yuan, Y., Wang, Z., Liu, Y., & Chen, L. (2025). Simulation and Experimental Study of the Single-Pulse Femtosecond Laser Ablation Morphology of GaN Films. Micromachines, 16(1), 85. https://doi.org/10.3390/mi16010085