A High-Precision Micro-Roll Forming Facility for Fuel Cell Metal Bipolar Plate Production
Abstract
:1. Introduction
2. Experimental Methodology and Setup
2.1. The Designed Part and Roll Tool Profile Geometry
2.2. Design and Manufacture of the High-Precision Roll Former
2.3. Procedure for High-Precision Roll Tool Manufacture
2.4. Procedure for High-Precision Roll Alignment
2.5. Analysis of Tool Profile Shape Accuracy
2.6. Roll Forming Trials
2.6.1. Material
2.6.2. Roll Forming Test Conditions
2.6.3. Analysis of the Sheet Profile Shape
3. Results
3.1. Profiles of the Tool Bit
3.2. Profile Shape and Surface Roughness of the Produced Forming Rolls
3.3. Micro-Roll Forming Trials
3.3.1. Comparison of the Formed Cross-Section Shape with the Ideal Shape
3.3.2. Material Thinning
4. Discussion
4.1. The Effect of the Cutting Bid Shape Accuracy on the Micro-Roller Profile and the Formed Micro-Channel Profile Radius
4.2. The Effect of Springback
4.3. Tool Alignment and Material Thinning
4.4. Future Applications
5. Conclusions
- Wire cutting allows the production of the steel cutting tool with high accuracy. However, when applied to the roll turning process, jagging and overcutting lead to some shape errors on the produced micro-roll profile. Future work needs to investigate the application of lubrication and coolant fluids to overcome this issue.
- Outside the regions where jagging and overcutting occurred, the micro-roll tool profile was formed with an accuracy that was between −13% and 12% of the designed shape.
- In most cases the product accuracy achieved when roll forming the titanium foil was not directly linked to the roll profile shape accuracy. On the contrary this study showed that springback accounted for most of the shape errors observed.
- The new micro-roll former design led to a clear improvement in tool alignment that manifested itself by a more evenly distributed and lower level of material thinning in the micro-roll formed titanium profile compared to previous studies.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahluwalia, R.K.; Wang, X.; Star, A.G.; Papadias, D.D. Performance and cost of fuel cells for off-road heavy-duty vehicles. Int. J. Hydrogen Energy 2022, 47, 10990–11006. [Google Scholar] [CrossRef]
- Thompson, S.T.; James, B.D.; Huya-Kouadio, J.M.; Houchins, C.; DeSantis, D.A.; Ahluwalia, R.; Wilson, A.R.; Kleen, G.; Papageorgopoulos, D. Direct hydrogen fuel cell electric vehicle cost analysis: System and high-volume manufacturing description, validation, and outlook. J. Power Sources 2018, 399, 304–313. [Google Scholar] [CrossRef]
- Kopasz, J.P.; Benjamin, T.G.; Schenk, D. 2017 Bipolar Plate Workshop Summary Report; U.S. Department of Energy Fuel Cell Technologies Office (FCTO), Argonne National Lab. (ANL): Argonne, IL, USA, 2017. [Google Scholar]
- James, B.D.; Huya-Kouadio, J.; Houchins, C.; Desantis, D. Final SA 2018 Transportation Fuel Cell Cost Analysis-2020-01-23. 2018. Available online: https://www.researchgate.net/publication/341407810_Final_SA_2018_Transportation_Fuel_Cell_Cost_Analysis_-2020-01-23 (accessed on 11 January 2025).
- Huya-Kouadio, J.M.; James, B.D.; Houchins, C. Meeting Cost and Manufacturing Expectations for Automotive Fuel Cell Bipolar Plates. ECS Trans. 2018, 83, 93–109. [Google Scholar] [CrossRef]
- Porstmann, S.; Wannemacher, T.; Drossel, W.G. A comprehensive comparison of state-of-the-art manufacturing methods for fuel cell bipolar plates including anticipated future industry trends. J. Manuf. Process. 2020, 60, 366–383. [Google Scholar] [CrossRef]
- Feintool. Feinforming Bipolar Plates. Available online: https://www.feintool.com/en/technology/feinforming-bipolar-plates/ (accessed on 28 April 2023).
- Zhang, P.; Pereira, M.P.; Rolfe, B.F.; Wilkosz, D.E.; Hodgson, P.; Weiss, M. Investigation of material failure in micro-stamping of metallic bipolar plates. J. Manuf. Process. 2022, 73, 54–66. [Google Scholar] [CrossRef]
- Borit, N.V. Metal Plates and Assemblies for Fuel Cells and Electrolyzers. Available online: https://www.borit.be/capabilities/hydrogate-forming (accessed on 28 April 2023).
- Xu, Z.; Qiu, D.; Yi, P.; Peng, L.; Lai, X. Towards mass applications: A review on the challenges and developments in metallic bipolar plates for PEMFC. Prog. Nat. Sci. Mater. Int. 2020, 30, 815–824. [Google Scholar] [CrossRef]
- Liu, Y.; Hua, L.; Lan, J.; Wei, X. Studies of the deformation styles of the rubber-pad forming process used for manufacturing metallic bipolar plates. J. Power Sources 2010, 195, 8177–8184. [Google Scholar] [CrossRef]
- Bauer, A.; Härtel, S.; Awiszus, B. Manufacturing of Metallic Bipolar Plate Channels by Rolling. J. Manuf. Mater. Process. 2019, 3, 48. [Google Scholar] [CrossRef]
- Ren, M.; Lin, F.; Jia, F.; Xie, H.; Yang, M.; Jiang, Z. Micro rolling fabrication of copper/SS304L micro composite channels. J. Manuf. Process. 2023, 90, 1–13. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Z.; Zhang, R.; Jiang, T.; Peng, L. Fabrication of micro channels for titanium PEMFC bipolar plates by multistage forming process. Int. J. Hydrogen Energy 2020, 46, 11092–11103. [Google Scholar] [CrossRef]
- Mahabunphachai, S.; Cora, Ö.N.; Koç, M. Effect of manufacturing processes on formability and surface topography of proton exchange membrane fuel cell metallic bipolar plates. J. Power Sources 2010, 195, 5269–5277. [Google Scholar] [CrossRef]
- Huang, J.; Deng, Y.; Yi, P.; Peng, L. Experimental and numerical investigation on thin sheet metal roll forming process of micro channels with high aspect ratio. Int. J. Adv. Manuf. Technol. 2019, 100, 117–129. [Google Scholar] [CrossRef]
- Abeyrathna, B.; Zhang, P.; Pereira, M.P.; Wilkosz, D.; Weiss, M. Micro-roll forming of stainless steel bipolar plates for fuel cells. Int. J. Hydrogen Energy 2019, 44, 3861–3875. [Google Scholar] [CrossRef]
- Zhang, P.; Pereira, M.; Rolfe, B.; Daniel, W.; Weiss, M. Deformation in Micro Roll Forming of Bipolar Plate. J. Phys. Conf. Ser. 2017, 896, 012115. [Google Scholar] [CrossRef]
- Fewtrell, J. An Experimental Analysis of Operating Conditions in Cold Roll-Forming. Ph.D. Thesis, University of Aston, Birmingham, UK, 1990. [Google Scholar]
- Sladky, R.A. Profit Pointer for Tube Mill Alignment. Available online: https://www.roll-kraft.com/technical-resources/profit-pointer-for-tube-mill-alignment (accessed on 1 May 2023).
- Peng, L.; Liu, D.A.; Hu, P.; Lai, X.; Ni, J. Fabrication of Metallic Bipolar Plates for Proton Exchange Membrane Fuel Cell by Flexible Forming Process-Numerical Simulations and Experiments. J. Fuel Cell Sci. Technol. 2010, 7, 031009. [Google Scholar] [CrossRef]
- Dhanorker, A.; Özel, T. Meso/micro scale milling for micro-manufacturing. Int. J. Mechatron. Manuf. Syst. 2008, 1, 23–42. [Google Scholar] [CrossRef]
- Sudarsan, C.; Sajun Prasad, K.; Hazra, S.; Panda, S.K. Forming of serpentine micro-channels on SS304 and AA1050 ultra-thin metallic sheets using stamping technology. J. Manuf. Process. 2020, 56, 1099–1113. [Google Scholar] [CrossRef]
- Zhang, C.; Ma, J.; Liang, X.; Luo, F.; Cheng, R.; Gong, F. Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by using polymer powder medium based flexible forming. J. Mater. Process. Technol. 2018, 262, 32–40. [Google Scholar] [CrossRef]
- Quintana, G.; Ciurana, J. Chatter in machining processes: A review. Int. J. Mach. Tools Manuf. 2011, 51, 363–376. [Google Scholar] [CrossRef]
- ASTM E8/E8M-22; Standard Test Methods for Tension Testing of Metallic Materials. ASTM: West Conshohocken, PA, USA, 2022; 31p. [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
Radius Location | Ideal Radius [mm] | Measured Radius [mm] | Error [%] | |
---|---|---|---|---|
station 1 | 1 | 0.28 | 0.35 | 25.00 |
2 | 0.17 | 0.19 | 10.86 | |
3 | 0.28 | 0.29 | 3.22 | |
station 2 | 1 | 0.28 | 0.31 | 10.28 |
2 | 0.17 | 0.18 | 7.02 | |
3 | 0.28 | 0.24 | −13.98 | |
4 | 0.17 | 0.18 | 7.36 | |
5 | 0.28 | 0.26 | −8.47 | |
6 | 0.17 | 0.18 | 7.91 | |
7 | 0.28 | 0.25 | −10.43 | |
station 3 | 1 | 0.20 | 0.24 | 22.19 |
2 | 0.10 | 0.16 | 61.63 | |
3 | 0.10 | 0.22 | 122.68 | |
4 | 0.20 | 0.17 | −13.55 | |
5 | 0.20 | 0.23 | 14.75 | |
6 | 0.10 | 0.17 | 70.15 | |
7 | 0.10 | 0.18 | 81.56 | |
8 | 0.20 | 0.23 | 14.77 | |
9 | 0.20 | 0.26 | 30.61 | |
10 | 0.10 | 0.16 | 60.79 | |
11 | 0.10 | 0.16 | 55.86 | |
12 | 0.20 | 0.22 | 11.60 |
Channel Number | Ideal Depth [mm] | Measured Depth [mm] | Error [%] | |
---|---|---|---|---|
station 1 | S1-2 | 0.40 | 0.310 | −21.27 |
station 2 | S2-2 (left) | 0.40 | 0.349 | −12.72 |
S2-4 (middle) | 0.40 | 0.346 | −13.51 | |
S2-6 (right) | 0.40 | 0.354 | −11.61 | |
station 3 | S3-2&3 (left) | 0.34 | 0.396 | 16.47 |
S3-6&7 (middle) | 0.34 | 0.404 | 18.87 | |
S3-10&11 (right) | 0.34 | 0.399 | 17.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiss, M.; Zhang, P.; Pereira, M. A High-Precision Micro-Roll Forming Facility for Fuel Cell Metal Bipolar Plate Production. Micromachines 2025, 16, 91. https://doi.org/10.3390/mi16010091
Weiss M, Zhang P, Pereira M. A High-Precision Micro-Roll Forming Facility for Fuel Cell Metal Bipolar Plate Production. Micromachines. 2025; 16(1):91. https://doi.org/10.3390/mi16010091
Chicago/Turabian StyleWeiss, Matthias, Peng Zhang, and Michael Pereira. 2025. "A High-Precision Micro-Roll Forming Facility for Fuel Cell Metal Bipolar Plate Production" Micromachines 16, no. 1: 91. https://doi.org/10.3390/mi16010091
APA StyleWeiss, M., Zhang, P., & Pereira, M. (2025). A High-Precision Micro-Roll Forming Facility for Fuel Cell Metal Bipolar Plate Production. Micromachines, 16(1), 91. https://doi.org/10.3390/mi16010091