Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber
Abstract
:1. Introduction
2. Experimental Setup and Basic Principles
3. Results
3.1. Heterodyne Spectra of All-Optical Microwave Oscillator
3.2. Linewidth Measurement of All-Optical Microwave Oscillator
3.3. Threshold Measurement of All-Optical Microwave Oscillator
3.4. Stability Measurement of All-Optical Microwave Oscillator
3.5. SSB Phase Noise Measurement of All-Optical Microwave Oscillator
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spirin, V.V.; López-Mercado, C.A.; Mégret, P.; Fotiadi, A.A. Single-mode Brillouin fiber laser passively stabilized at resonance frequency with self-injection locked pump laser. Laser Phys. Lett. 2012, 9, 377–380. [Google Scholar] [CrossRef]
- Lecoeuche, V.; Webb, D.J.; Pannell, C.N.; Jackson, D.A. 25 km Brillouin based single-ended distributed fibre sensor for threshold detection of temperature or strain. Opt. Commun. 1999, 168, 95–102. [Google Scholar] [CrossRef]
- Mihélic, F.; Bacquet, D.; Zemmouri, J.; Szriftgiser, P. Ultrahigh resolution spectral analysis based on a Brillouin fiber laser. Opt. Lett. 2010, 35, 432–434. [Google Scholar] [CrossRef]
- Dainese, P.; Russell, P.S.J.; Wiederhecker, G.S.; Joly, N.; Fragnito, H.L.; Laude, V.; Khelif, A. Raman-like light scattering from acoustic phonons in photonic crystal fiber. Opt. Express 2006, 14, 4141–4150. [Google Scholar] [CrossRef]
- Nishizawa, N.; Kume, S.; Mori, M.; Goto, T.; Miyauchi, A. Characteristics of guided acoustic wave Brillouin scattering in polarization maintaining fibers. Opt. Rev. 1996, 3, 29–33. [Google Scholar] [CrossRef]
- Nishizawa, N.; Kume, S.; Mori, M.; Goto, T.; Miyauchi, A. Experimental analysis of guided acoustic wave Brillouin scattering in PANDA fibers. JOSA B 1995, 12, 1651–1655. [Google Scholar] [CrossRef]
- Tanaka, Y.; Ogusu, K. Temperature coefficient of sideband frequencies produced by depolarized guided acoustic-wave Brillouin scattering. IEEE Photonics Technol. Lett. 1998, 10, 1769–1771. [Google Scholar] [CrossRef]
- Tamura, K.; Haus, H.A.; Ippen, E.P. Self-starting additive pulse mode-locked erbium fibre ring laser. Electron. Lett. 1992, 28, 2226–2228. [Google Scholar] [CrossRef]
- Kang, M.S.; Joly, N.Y.; Russell, P.S.J. Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances. Opt. Lett. 2013, 38, 561–563. [Google Scholar] [CrossRef]
- Jia, Q.S.; Wang, T.S.; Ma, W.Z.; Liu, P.; Zhang, P.; Bo, B.X.; Zhang, Y. Passively harmonic mode-locked pulses in thulium-doped fiber laser based on nonlinear polarization rotation. Opt. Eng. 2016, 55, 106121. [Google Scholar] [CrossRef]
- Shang, X.X.; Guo, L.G.; Gao, J.J.; Jiang, S.Z.; Han, X.L.; Guo, Q.X.; Chen, X.H.; Li, D.W.; Zhang, H.N. 170 mW-level mode-locked Er-doped fiber laser oscillator based on nonlinear polarization rotation. Appl. Phys. B 2019, 125, 193. [Google Scholar] [CrossRef]
- Ma, S.N.; Pang, Y.X.; Ji, Q.; Zhao, X.; Qin, Z.G.; Liu, Z.J.; Lu, P.; Bao, X.Y.; Xu, Y.P. Optomechanically Mode-Locked Laser Sensor for High Accuracy Temperature Measurement. IEEE Sens. J. 2023, 24, 311–317. [Google Scholar] [CrossRef]
- Yang, S.G.; Yang, Y.; Li, J.Y.; Ding, S.M.; Chen, H.W.; Chen, M.H.; Xie, S.Z. Opto-electronic oscillator mediated by acoustic wave in a photonic crystal fiber stimulated in 1 μm band. Opt. Lett. 2018, 43, 4879–4882. [Google Scholar] [CrossRef] [PubMed]
- London, Y.; Diamandi, H.H.; Zadok, A. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber. APL Photonics 2017, 2, 041303. [Google Scholar] [CrossRef]
- Li, P.; Dai, Z.; Fan, Z.Q.; Yan, L.S.; Yao, J.P. Parity–time-symmetric frequency-tunable optoelectronic oscillator with a single dual-polarization optical loop. Opt. Lett. 2020, 45, 3139–3142. [Google Scholar] [CrossRef]
- Liu, P.C.; Xie, Z.W.; Lin, D.D.; Lu, M.J.; Cheng, W.; Hu, G.H.; Yun, B.F.; Cui, Y.P. Parity-time symmetric tunable OEO based on dual-wavelength and cascaded PS-FBGs in a single-loop. Opt. Express 2021, 29, 35377–35386. [Google Scholar] [CrossRef]
- Liu, P.C.; Zheng, P.F.; Yang, H.M.; Lin, D.D.; Hu, G.H.; Yun, B.F.; Cui, Y.P. Parity-time symmetric frequency-tunable optoelectronic oscillator based on a Si3N4 microdisk resonator. Appl. Opt. 2021, 60, 1930–1936. [Google Scholar] [CrossRef]
- Wu, Z.J.; Shen, Q.S.; Zhan, L.; Liu, J.M.; Yuan, W.; Wang, Y.X. Optical generation of stable microwave signal using a dual-wavelength Brillouin fiber laser. IEEE Photonics Technol. Lett. 2010, 22, 568–570. [Google Scholar] [CrossRef]
- Parvizi, R.; Ali, N.M.; Azargoshasb, T. Low threshold multiwavelength Brillouin–erbium fiber laser generation in conjunction with a photonic crystal fiber. Laser Phys. 2013, 23, 115101. [Google Scholar] [CrossRef]
- Song, K.Y.; Kishi, M.; He, Z.; Hotate, K. High-repetition-rate distributed Brillouin sensor based on optical correlation-domain analysis with differential frequency modulation. Opt. Lett. 2011, 36, 2062–2064. [Google Scholar] [CrossRef]
- Feng, S.J.; Mao, Q.H.; Tian, Y.Y.; Ma, Y.; Li, W.C.; Wei, L. Widely Tunable Single Longitudinal Mode Fiber Laser with Cascaded Fiber-Ring Secondary Cavity. IEEE Photonics Technol. Lett. 2013, 25, 323–326. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Y.; Gu, Y.Q.; Chen, P.F.; Jiang, K.; Wang, L.Y.; You, Y.J.; He, W.J.; Chou, X.J. Ultra-narrow linewidth dual-cavity opto-mechanical microwave oscillator based on radial guided acoustic modes of single-mode fiber. Appl. Phys. Lett. 2023, 122, 041107. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.J.; Zhang, J.Z.; Wang, Y.C. Single-Longitudinal-Mode Triple-Ring Brillouin Fiber Laser With a Saturable Absorber Ring Resonator. J. Lightwave Technol. 2017, 35, 1744–1749. [Google Scholar] [CrossRef]
- Wang, Z.K.; Shang, J.M.; Li, S.Q.; Mu, K.L.; Qiao, Y.J.; Yu, S. All-polarization maintaining single-longitudinal-mode fiber laser with ultra-high OSNR, sub-KHz linewidth and extremely high stability. Opt. Laser Technol. 2021, 141, 107135. [Google Scholar] [CrossRef]
- Tan, H.Y.; Yan, F.P.; Feng, T.; Li, T.; Qin, Q.; Yang, D.D.; Li, G.B.; Wang, X.D.; Guo, H.; Gao, J.; et al. Thulium-doped fiber laser with bidirectional single-longitudinal-mode output using a cascaded triple-ring cavity filter. Infrared Phys. Technol. 2023, 134, 104904. [Google Scholar] [CrossRef]
- Pang, M.; Jiang, X.; He, W.; Wong, G.K.L.; Onishchukov, G.; Joly, N.Y.; Ahmed, G.; Menyuk, C.R.; Russell, P.S.J. Stable subpicosecond soliton fiber laser passively mode-locked by gigahertz acoustic resonance in photonic crystal fiber core. Optica 2015, 2, 339–342. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Y.; Chen, P.F.; Gu, Y.Q.; You, Y.J.; He, W.J.; Chou, X.J. Narrow Linewidth All-Optical Optomechanically Microwave Oscillator Based on Forward Stimulated Brillouin Scattering. J. Lightwave Technol. 2023, 41, 5303–5309. [Google Scholar] [CrossRef]
- Chong, A.; Buckley, J.; Renninger, W.; Wise, F. All-normal-dispersion femtosecond fiber laser. Opt. Express 2006, 14, 10095–10100. [Google Scholar] [CrossRef]
- Anderson, D.; Desaix, M.; Lisak, M.; Quiroga–Teixeiro, M.L. Wave breaking in nonlinear-optical fibers. JOSA B 1992, 9, 1358–1361. [Google Scholar] [CrossRef]
- Penzkofer, A.; Wittmann, M.; Bäumler, W.; Petrov, V. Theoretical analysis of contributions of self-phase modulation and group-velocity dispersion to femtosecond pulse generation in passive mode-locked dye lasers. Appl. Opt. 1992, 31, 7067–7082. [Google Scholar] [CrossRef]
- Bernstein, A.; Zehavi, E.; London, Y.; Hen, M.; Suna, R.; Ben-Ami, S.; Zadok, A. Tensor characteristics of forward Brillouin sensors in bare and coated fibers. APL Photonics 2023, 8, 126105. [Google Scholar] [CrossRef]
- Stokes, L.F.; Chodorow, M.; Shaw, H.J. All-single-mode fiber resonator. Opt. Lett. 1982, 7, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Debut, A.; Randoux, S.; Zemmouri, J. Linewidth narrowing in Brillouin lasers: Theoretical analysis. Phys. Rev. A 2000, 62, 023803. [Google Scholar] [CrossRef]
- Digonnet, M.J.F.; Shaw, H.J. Analysis of a tunable single mode optical fiber coupler. IEEE Trans. Microw. Theory Tech. 1982, 30, 592–600. [Google Scholar] [CrossRef]
- Hong, J.; Yao, S.X.; Li, Z.L.; Huang, J.X.; Fang, X.W.; Guo, J. Fiber-length-dependence phase noise of injection-locked optoelectronic oscillator. Microw. Opt. Technol. Lett. 2013, 55, 2568–2571. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yao, J.P. Parity-time–symmetric optoelectronic oscillator. Sci. Adv. 2018, 4, eaar6782. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; He, W.; Fang, X.; Liu, Y.; You, Y.; Li, M.; Yu, L.; Yan, Q.; Hou, Y.; He, J.; et al. Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber. Micromachines 2025, 16, 97. https://doi.org/10.3390/mi16010097
Wang W, He W, Fang X, Liu Y, You Y, Li M, Yu L, Yan Q, Hou Y, He J, et al. Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber. Micromachines. 2025; 16(1):97. https://doi.org/10.3390/mi16010097
Chicago/Turabian StyleWang, Wen, Wenjun He, Xinyue Fang, Yi Liu, Yajun You, Mingxing Li, Lei Yu, Qing Yan, Yafei Hou, Jian He, and et al. 2025. "Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber" Micromachines 16, no. 1: 97. https://doi.org/10.3390/mi16010097
APA StyleWang, W., He, W., Fang, X., Liu, Y., You, Y., Li, M., Yu, L., Yan, Q., Hou, Y., He, J., & Chou, X. (2025). Narrow Linewidth All-Optical Microwave Oscillator Based on Torsional Radial Acoustic Modes of Single-Mode Fiber. Micromachines, 16(1), 97. https://doi.org/10.3390/mi16010097