Interface Acoustic Waves in 128° YX-LiNbO3/SU-8/Overcoat Structures
Abstract
:1. Introduction
2. Methods
Eigenfrequency and Frequency Domain Study
3. Experiment
3.1. Sample Preparation
3.2. Device Test
3.2.1. SAW in Bare LiNbO3
3.2.2. IAW in LiNbO3/SU-8/SiO2
3.2.3. IAW in LiNbO3/SU-8/Si
3.2.4. IAW in LiNbO3/SU-8/Sapphire
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- LIM, T.; Musgrave, M. Stoneley Waves in Anisotropic Media. Nature 1970, 225, 372. [Google Scholar] [CrossRef]
- Bhattacharjee, K.; Shvetsov, A.; Zhgoon, S. Packageless SAW Devices with Isolated Layer Acoustic Waves (ILAW) and Waveguiding Layer Acoustic Waves (WLAW). In Proceedings of the 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, Geneva, Switzerland, 29 May 2007–1 June 2007; pp. 135–140. [Google Scholar] [CrossRef]
- Irino, T.; Shimizu, Y. Optimized Stoneley wave device by proper choice of glass overcoat. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1989, 36, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Legrani, O.; Elmazria, O.; Zhgoon, S.; Pigeat, P.; Bartasyte, A. Packageless AlN/ZnO/Si Structure for SAW Devices Applications. IEEE Sens. J. 2013, 13, 487–491. [Google Scholar] [CrossRef]
- Kando, H.; Yamamoto, D.; Tochishita, H.; Kadota, M. RF Filter using Boundary Acoustic Wave. Jpn. J. Appl. Phys. 2006, 45, 4651–4654. [Google Scholar] [CrossRef]
- Du, X.Y.; Swanwick, M.E.; Fu, Y.Q.; Luo, J.K.; Flewitt, A.J.; Lee, D.S.; Maeng, S.; Milne, W.I. Surface acoustic wave induced streaming and pumping in 128° Y-cut LiNbO3 for microfluidic applications. J. Micromechanics Microengineering 2009, 19, 035016. [Google Scholar] [CrossRef]
- Tseng, W.-K.; Lin, J.-L.; Sung, W.-C.; Chen, S.-H.; Lee, G.-B. Active micro-mixers using surface acoustic waves on Y-cut 128° LiNbO3. J. Micromechanics Microengineering 2006, 16, 539–548. [Google Scholar] [CrossRef]
- Guo, Y.J.; Lv, H.B.; Li, Y.F.; He, X.L.; Zhou, J.; Luo, J.K.; Zu, X.T.; Walton, A.J.; Fu, Y.Q. High frequency microfluidic performance of LiNbO3 and ZnO surface acoustic wave devices. J. Appl. Phys. 2014, 116, 024501. [Google Scholar] [CrossRef]
- Gharib, G.; Bütün, I.; Muganlı, Z.; Kozalak, G.; Namlı, İ.; Sarraf, S.S.; Ahmadi, V.E.; Toyran, E.; van Wijnen, A.J.; Koşar, A. Biomedical Applications of Microfluidic Devices: A Review. Biosensors 2022, 12, 1023. [Google Scholar] [CrossRef] [PubMed]
- Yantchev, V.; Enlund, J.; Katardjiev, I.; Johansson, S.; Johansson, L. Interface acoustic wave based manipulation of sub-micrometer particles in microfluidic channels. In Proceedings of the 2009 IEEE International Ultrasonics Symposium, Rome, Italy, 20–23 September 2009; pp. 617–620. [Google Scholar] [CrossRef]
- Yantchev, V.; Enlund, J.; Katardjiev, I.; Johansson, L. A Micromachined Stoneley Acoustic Wave System for Continuous Flow Particle Manipulation in Microfluidic Channels. 2009 US. 2009 US Provisional Patent Application No 61/171948, 2 March 2010. [Google Scholar]
- Janardhana, R.D.; Jackson, N. A Simulated Investigation of Lithium Niobate Orientation Effects on Standing Acoustic Waves. Sensors 2023, 23, 8317. [Google Scholar] [CrossRef]
- Laude, V.; Ballandras, S.; Majjad, H.; Gachon, D. 6K-2 Interface Acoustic Wave Devices Made By Indirect Bonding of Lithium Niobate on Silicon. In Proceedings of the 2006 IEEE Ultrasonics Symposium, Vancouver, BC, Canada, 2–6 October 2006; pp. 1193–1196. [Google Scholar] [CrossRef]
- Slobodnik, A.J., Jr.; Conway, E.D.; Delmonico, R.T. Air Force Cambridge Research Laboratories; Report No. AFCRL-TR-73-0597; U.S. Department of Commerce: Washington, DC, USA, 1973. [Google Scholar]
- Caliendo, C.; Cannatà, D.; Benetti, M.; Buzzin, A. UV sensors based on the propagation of the fundamental and third harmonic Rayleigh waves in ZnO/fused silica. In Proceedings of the 2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI), Monopoli (Bari), Italy, 8–9 June 2023; pp. 261–266. [Google Scholar] [CrossRef]
- Caliendo, C.; Benetti, M.; Cannatà, D.; Laidoudi, F.; Petrone, G. Experimental and Theoretical Analysis of Rayleigh and Leaky-Sezawa Waves Propagating in ZnO/Fused Silica Substrates. Micromachines 2024, 15, 974. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.J.; Liu, H.L.; Jin, Y.X.; Liang, L.; Zhu, D.M.; Zhu, X.Q.; Guo, S.S.; Zhou, F.L.; Yang, Y. Precise label-free leukocyte subpopulation separation using hybrid acoustic-optical chip. Lab Chip 2018, 18, 3405. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.C.; Guldiken, R. Effects of polydimethylsiloxane (PDMS) microchannels on surface acoustic wave-based microfluidic devices. Microelectron. Eng. 2014, 113, 98–104, ISSN 0167-9317. [Google Scholar] [CrossRef]
- Bettella, G.; Pozza, G.; Kroesen, S.; Zamboni, R.; Baggio, E.; Montevecchi, C.; Zaltron, A.; Gauthier-Manuel, L.; Mistura, G.; Furlan, C.; et al. Lithium niobate micromachining for the fabrication of microfluidic droplet generators. Micromachines 2017, 8, 185. [Google Scholar] [CrossRef]
- Osellame, R. Femtosecond-laser-based microstructuring and modification of transparent materials. In Advanced Solid State Lasers; Optical Society of America Technical Digest (Online) (Optica Publishing Group): Washington, DC, USA, 2015; paper AF1A.1. [Google Scholar] [CrossRef]
- Lin, J.; Xu, Y.; Fang, Z.; Wang, M.; Song, J.; Wang, N.; Qiao, L.; Fang, W.; Cheng, Y. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci. Rep. 2015, 5, 8072. [Google Scholar] [CrossRef] [PubMed]
- Sfregola, F.A.; De Palo, R.; Gaudiuso, C.; Mezzapesa, F.P.; Patimisco, P.; Ancona, A.; Volpe, A. Influence of working parameters on multi-shot femtosecond laser surface ablation of lithium niobate. Opt. Laser Technol. 2024, 177, 111067, ISSN 0030-3992. [Google Scholar] [CrossRef]
- Langelier, S.M.; Yeo, L.Y.; Friend, J. UV epoxy bonding for enhanced SAW transmission and microscale acoustofluidic integration. Lab Chip 2012, 12, 2970–2976. [Google Scholar] [CrossRef]
Overcoat Material | Mass Density (Kg/m3) | Young Modulus (GPa) | Poisson Ratio | Reference |
---|---|---|---|---|
SiO2 | 2200 | 70 | 0.17 | Comsol library |
Diamond | 3515 | 1050 | 0.1 | Comsol library |
Si3N4 | 3100 | 250 | 0.23 | Comsol library |
SU-8 | 1190 | 4.02 | 0.22 | [13] |
Elastic constants (GPa) | ||||
Si (001)<100> | 2330 | c11 = 166; c12 = 64 | Comsol library | |
Al2O3 (001) | 3980 | c11 = 497; c12 = 164; c13 = 111; c14 = −23.5; c33 = 498; c44 = 147; c66 = 166.5 | [14] |
Material/Orientation | LBAW (m/s) | SHBAW1 (m/s) | SHBAW2 (m/s) | SAW (m/s) |
---|---|---|---|---|
zx-Sapphire | 11,174.72 | 6765.87 | 5743.86 | 5735.28 |
zx-Silicon | 8440.65 | 5844.92 | 5844.92 | 4921.23 |
diamond | 17,503.66 | 12,804.38 | 12,804.38 | 10,971.00 |
SiO2 | 5973.43 | 3765.88 | 3765.88 | 3411.15 |
Si3N4 | 8241.63 | 5266.48 | 5266.48 | 4756.16 |
128° YX-LiNbO3 | 6572.02 | 4794.77 | 4079.21 | 3994.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caliendo, C.; Benetti, M.; Cannatà, D.; Laidoudi, F.; Petrone, G. Interface Acoustic Waves in 128° YX-LiNbO3/SU-8/Overcoat Structures. Micromachines 2025, 16, 99. https://doi.org/10.3390/mi16010099
Caliendo C, Benetti M, Cannatà D, Laidoudi F, Petrone G. Interface Acoustic Waves in 128° YX-LiNbO3/SU-8/Overcoat Structures. Micromachines. 2025; 16(1):99. https://doi.org/10.3390/mi16010099
Chicago/Turabian StyleCaliendo, Cinzia, Massimiliano Benetti, Domenico Cannatà, Farouk Laidoudi, and Gaetana Petrone. 2025. "Interface Acoustic Waves in 128° YX-LiNbO3/SU-8/Overcoat Structures" Micromachines 16, no. 1: 99. https://doi.org/10.3390/mi16010099
APA StyleCaliendo, C., Benetti, M., Cannatà, D., Laidoudi, F., & Petrone, G. (2025). Interface Acoustic Waves in 128° YX-LiNbO3/SU-8/Overcoat Structures. Micromachines, 16(1), 99. https://doi.org/10.3390/mi16010099