Portable Fluorescence Microarray Reader-Enabled Biomarker Panel Detection System for Point-of-Care Diagnosis of Lupus Nephritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fluorescent Reader Development
2.2. Fabrication and Assembly of the BMA Chip
2.3. Image Analysis and Processing Pipeline
2.4. Patients, Clinical Samples, and Reagents
2.5. Statistical Analysis
3. Results
3.1. Power Assessment to Excite BMA Spots
3.2. Performance Comparison Between BMA Reader and Genepix Scanner
3.3. BMA Multiplex Biomarker Analysis in Patient Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, S.; Lui, S.L.; Lai, K.N. Pathogenesis of lupus nephritis: An update. Nephrology 2005, 10, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Didier, K.; Bolko, L.; Giusti, D.; Toquet, S.; Robbins, A.; Antonicelli, F.; Servettaz, A. Autoantibodies associated with connective tissue diseases: What meaning for clinicians? Front. Immunol. 2018, 9, 541. [Google Scholar] [CrossRef] [PubMed]
- Imig, J.D.; Ryan, M.J. Immune and inflammatory role in renal disease. Compr. Physiol. 2013, 3, 957–976. [Google Scholar] [PubMed]
- Adedokun, G.; Alipanah, M.; Fan, Z.H. Sample preparation and detection methods in point-of-care devices towards future at-home testing. Lab Chip 2024, 24, 3626–3650. [Google Scholar] [CrossRef] [PubMed]
- Plebani, M.; Nichols, J.H.; Luppa, P.B.; Greene, D.; Sciacovelli, L.; Shaw, J.; Khan, A.I.; Carraro, P.; Freckmann, G.; Dimech, W.; et al. Point-of-care testing: State-of-the art and perspectives. Clin. Chem. Lab. Med. 2024, 63, 35–51. [Google Scholar] [CrossRef]
- Dincer, C.; Bruch, R.; Kling, A.; Dittrich, P.S.; Urban, G.A. Multiplexed point-of-care testing–xPOCT. Trends Biotechnol. 2017, 35, 728–742. [Google Scholar] [CrossRef]
- Tagit, O.; Hildebrandt, N. Fluorescence sensing of circulating diagnostic biomarkers using molecular probes and nanoparticles. ACS Sens. 2017, 2, 31–45. [Google Scholar] [CrossRef]
- Yao, B.; Giel, M.-C.; Hong, Y. Detection of kidney disease biomarkers based on fluorescence technology. Mater. Chem. Front. 2021, 5, 2124–2142. [Google Scholar] [CrossRef]
- Ramdas, L.; Zhang, W. Microarray image scanning. Cell Imaging Tech. Methods Protoc. 2006, 319, 261–273. [Google Scholar]
- Nath, P.; Mahtaba, K.R.; Ray, A. Fluorescence-Based Portable Assays for Detection of Biological and Chemical Analytes. Sensors 2023, 23, 5053. [Google Scholar] [CrossRef]
- Mabaso, M.A.; Withey, D.J.; Twala, B. Spot detection methods in fluorescence microscopy imaging: A review. Image Anal. Ster. 2018, 37, 173–190. [Google Scholar] [CrossRef]
- Manders, E.M.; Hoebe, R.; Strackee, J.; Vossepoel, A.; Aten, J. Largest contour segmentation: A tool for the localization of spots in confocal images. Cytom. J. Int. Soc. Anal. Cytol. 1996, 23, 15–21. [Google Scholar] [CrossRef]
- Mukunda, D.C.; Joshi, V.K.; Mahato, K.K. Light emitting diodes (LEDs) in fluorescence-based analytical applications: A review. Appl. Spectrosc. Rev. 2022, 57, 1–38. [Google Scholar] [CrossRef]
- Nayak, S.; Blumenfeld, N.R.; Laksanasopin, T.; Sia, S.K. Point-of-care diagnostics: Recent developments in a connected age. Anal. Chem. 2017, 89, 102–123. [Google Scholar] [CrossRef]
- Tan, G.; Baby, B.; Zhou, Y.; Wu, T. Emerging molecular markers towards potential diagnostic panels for lupus. Front. Immunol. 2022, 12, 808839. [Google Scholar] [CrossRef]
- Yuan, Y.; Qiu, J.; Lin, Z.T.; Li, W.; Haley, C.; Mui, U.N.; Ning, J.; Tyring, S.K.; Wu, T. Identification of novel autoantibodies associated with psoriatic arthritis. Arthritis Rheumatol. 2019, 71, 941–951. [Google Scholar] [CrossRef]
- Villanueva, R.A.M.; Chen, Z.J. ggplot2: Elegant graphics for data analysis. Meas. Interdiscip. Res. Perspect. 2019, 17, 160–167. [Google Scholar] [CrossRef]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V. R Package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). 2017. Available online: https://github.com/taiyun/corrplot (accessed on 15 November 2024).
- Cojocaru, M.; Cojocaru, I.M.; Silosi, I.; Vrabie, C.D. Manifestations of systemic lupus erythematosus. Maedica 2011, 6, 330–336. [Google Scholar]
- D’Cruz, D.P.; Khamashta, M.A.; Hughes, G.R. Systemic lupus erythematosus. Lancet 2007, 369, 587–596. [Google Scholar] [CrossRef]
- Yap, D.Y.; Tang, C.S.; Ma, M.K.; Lam, M.F.; Chan, T.M. Survival analysis and causes of mortality in patients with lupus nephritis. Nephrol. Dial. Transplant. 2012, 27, 3248–3254. [Google Scholar] [CrossRef] [PubMed]
- Borchers, A.T.; Leibushor, N.; Naguwa, S.M.; Cheema, G.S.; Shoenfeld, Y.; Gershwin, M.E. Lupus nephritis: A critical review. Autoimmun. Rev. 2012, 12, 174–194. [Google Scholar] [CrossRef] [PubMed]
- Whittall-Garcia, L.; Goliad, K.; Kim, M.; Bonilla, D.; Gladman, D.; Urowitz, M.; Fortin, P.R.; Atenafu, E.G.; Touma, Z.; Wither, J. Identification and Validation of a Urinary Biomarker Panel to Accurately Diagnose and Predict Response to Therapy in Lupus Nephritis. Front. Immunol. 2022, 13, 889931. [Google Scholar] [CrossRef]
- Pham, A.T.T.; Wallace, A.; Zhang, X.; Tohl, D.; Fu, H.; Chuah, C.; Reynolds, K.J.; Ramsey, C.; Tang, Y. Optical-Based Biosensors and Their Portable Healthcare Devices for Detecting and Monitoring Biomarkers in Body Fluids. Diagnostics 2021, 11, 1285. [Google Scholar] [CrossRef]
- Bergua, J.F.; Álvarez-Diduk, R.; Idili, A.; Parolo, C.; Maymó, M.; Hu, L.; Merkoçi, A. Low-Cost, User-Friendly, All-Integrated Smartphone-Based Microplate Reader for Optical-Based Biological and Chemical Analyses. Anal. Chem. 2022, 94, 1271–1285. [Google Scholar] [CrossRef]
- Kinnamon, D.S.; Heggestad, J.T.; Liu, J.; Chilkoti, A. Technologies for Frugal and Sensitive Point-of-Care Immunoassays. Annu. Rev. Anal. Chem. 2022, 15, 123–149. [Google Scholar] [CrossRef]
- Obahiagbon, U.; Smith, J.T.; Zhu, M.; Katchman, B.A.; Arafa, H.; Anderson, K.S.; Blain Christen, J.M. A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications. Biosens. Bioelectron. 2018, 117, 153–160. [Google Scholar] [CrossRef]
- Lee, L.G.; Nordman, E.S.; Johnson, M.D.; Oldham, M.F. A low-cost, high-performance system for fluorescence lateral flow assays. Biosensors 2013, 3, 360–373. [Google Scholar] [CrossRef]
- Martins, T.B.; Burlingame, R.; von Mühlen, C.A.; Jaskowski, T.D.; Litwin, C.M.; Hill, H.R. Evaluation of multiplexed fluorescent microsphere immunoassay for detection of autoantibodies to nuclear antigens. Clin. Diagn. Lab. Immunol. 2004, 11, 1054–1059. [Google Scholar] [CrossRef]
- Zhang, X.; Yao, B.; Hu, Q.; Hong, Y.; Wallace, A.; Reynolds, K.; Ramsey, C.; Maeder, A.; Reed, R.; Tang, Y. Detection of biomarkers in body fluids using bioprobes based on aggregation-induced emission fluorogens. Mater. Chem. Front. 2020, 4, 2548–2570. [Google Scholar] [CrossRef]
- He, F.; Xiong, B.; Sun, C.; Xia, X. A laplacian of gaussian-based approach for spot detection in two-dimensional gel electrophoresis images. In Proceedings of the Computer and Computing Technologies in Agriculture IV: 4th IFIP TC 12 Conference, CCTA 2010, Nanchang, China, 22–25 October 2010; pp. 8–15. [Google Scholar]
- Goceri, E. Evaluation of denoising techniques to remove speckle and Gaussian noise from dermoscopy images. Comput. Biol. Med. 2023, 152, 106474. [Google Scholar] [CrossRef] [PubMed]
- Smal, I.; Loog, M.; Niessen, W.; Meijering, E. Quantitative comparison of spot detection methods in fluorescence microscopy. IEEE Trans. Med. Imaging 2010, 29, 282–301. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, L.; Zhu, Q.; Wang, S. Research on the centroid detecting accuracy of stripe. In Proceedings of the AOPC 2017: Optical Sensing and Imaging Technology and Applications, Beijing, China, 4–6 June 2017; p. 1004. [Google Scholar]
- Boecker, W.; Muller, W.-U.; Streffer, C. Comparison of different automatic threshold algorithms for image segmentation in microscope images. In Proceedings of the Applications of Digital Image Processing XVIII, San Diego, CA, USA, 9–14 July 1995; pp. 230–241. [Google Scholar]
- Olugbara, O.O.; Adetiba, E.; Oyewole, S.A. Pixel intensity clustering algorithm for multilevel image segmentation. Math. Probl. Eng. 2015, 2015, 649802. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Wang, D.; Xie, J.; Wang, S.; Rong, Z. A handheld fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of methamphetamine and tramadol. Talanta 2024, 277, 126438. [Google Scholar] [CrossRef]
- Reddington, A.P.; Trueb, J.T.; Freedman, D.S.; Tuysuzoglu, A.; Daaboul, G.G.; Lopez, C.A.; Karl, W.C.; Connor, J.H.; Fawcett, H.; Ünlu, M.S. An interferometric reflectance imaging sensor for point of care viral diagnostics. IEEE Trans. Biomed. Eng. 2013, 60, 3276–3283. [Google Scholar] [CrossRef]
- Shrivastava, S.; Trung, T.Q.; Lee, N.E. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem. Soc. Rev. 2020, 49, 1812–1866. [Google Scholar] [CrossRef]
- de Puig, H.; Lee, R.A.; Najjar, D.; Tan, X.; Soeknsen, L.R.; Angenent-Mari, N.M.; Donghia, N.M.; Weckman, N.E.; Ory, A.; Ng, C.F.; et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Sci. Adv. 2021, 7, 32. [Google Scholar] [CrossRef]
- Jiang, R.; Wu, H.; Yang, J.; Jiang, H.; Du, M.; Vai, M.; Pun, S.; Gao, Y. Automatic Range Adjustment of the Fluorescence Immunochromatographic Assay Based on Image Processing. Sensors 2019, 20, 209. [Google Scholar] [CrossRef]
- Nowak, K.; Gumkowska-Sroka, O.; Kotyla, P. Adhesion molecules: A way to understand lupus. Reumatol./Rheumatol. 2022, 60, 133–141. [Google Scholar] [CrossRef]
- Chu, D.; Schwartz, N.; Ampudia, J.; Guthridge, J.; James, J.; Buyon, J.P.; Connelly, S.; Fung, M.; Ng, C.T.; Fava, A.; et al. Soluble urine activated leukocyte cell adhesion molecule is a strong predictor of lupus nephritis. Rheumatology 2024, keae559. [Google Scholar] [CrossRef]
- Yu, K.Y.; Yung, S.; Chau, M.K.; Tang, C.S.; Yap, D.Y.; Tang, A.H.; Ying, S.K.; Lee, C.K.; Chan, T.M. Clinico-pathological associations of serum VCAM-1 and ICAM-1 levels in patients with lupus nephritis. Lupus 2021, 30, 1039–1050. [Google Scholar] [CrossRef] [PubMed]
- Mancardi, D.; Arrigo, E.; Cozzi, M.; Cecchi, I.; Radin, M.; Fenoglio, R.; Roccatello, D.; Sciascia, S. Endothelial dysfunction and cardiovascular risk in lupus nephritis: New roles for old players? Eur. J. Clin. Investig. 2021, 51, e13441. [Google Scholar] [CrossRef] [PubMed]
- Kaleta, B. Role of osteopontin in systemic lupus erythematosus. Arch. Immunol. Ther. Exp. 2014, 62, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Song, G.G. Correlation between circulating osteopontin level in systemic lupus erythematosus and disease activity and associations between osteopontin polymorphisms and disease susceptibility: A meta-analysis. Lupus 2017, 26, 132–138. [Google Scholar] [CrossRef]
- Rullo, O.J.; Woo, J.M.; Parsa, M.F.; Hoftman, A.D.; Maranian, P.; Elashoff, D.A.; Niewold, T.B.; Grossman, J.M.; Hahn, B.H.; McMahon, M.; et al. Plasma levels of osteopontin identify patients at risk for organ damage in systemic lupus erythematosus. Arthritis Res. Ther. 2013, 15, R18. [Google Scholar] [CrossRef]
- Kiyohara, C.; Washio, M.; Horiuchi, T.; Tada, Y.; Asami, T.; Ide, S.; Atsumi, T.; Kobashi, G.; Takahashi, H.; Group, K.S.S.K.S. Cigarette smoking, STAT4 and TNFRSF1B polymorphisms, and systemic lupus erythematosus in a Japanese population. J. Rheumatol. 2009, 36, 2195–2203. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, S.; Teymur, A.; Yang, B.; Nazir, F.; Cai, Q.; Saxena, R.; Olsen, N.J.; Mohan, C.; Wu, T. V-Set Immunoglobulin Domain–Containing Protein 4 as a Novel Serum Biomarker of Lupus Nephritis and Renal Pathology Activity. Arthritis Rheumatol. 2023, 75, 1573–1585. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teymur, A.; Hussain, I.; Tang, C.; Saxena, R.; Erickson, D.; Wu, T. Portable Fluorescence Microarray Reader-Enabled Biomarker Panel Detection System for Point-of-Care Diagnosis of Lupus Nephritis. Micromachines 2025, 16, 156. https://doi.org/10.3390/mi16020156
Teymur A, Hussain I, Tang C, Saxena R, Erickson D, Wu T. Portable Fluorescence Microarray Reader-Enabled Biomarker Panel Detection System for Point-of-Care Diagnosis of Lupus Nephritis. Micromachines. 2025; 16(2):156. https://doi.org/10.3390/mi16020156
Chicago/Turabian StyleTeymur, Aygun, Iftak Hussain, Chenling Tang, Ramesh Saxena, David Erickson, and Tianfu Wu. 2025. "Portable Fluorescence Microarray Reader-Enabled Biomarker Panel Detection System for Point-of-Care Diagnosis of Lupus Nephritis" Micromachines 16, no. 2: 156. https://doi.org/10.3390/mi16020156
APA StyleTeymur, A., Hussain, I., Tang, C., Saxena, R., Erickson, D., & Wu, T. (2025). Portable Fluorescence Microarray Reader-Enabled Biomarker Panel Detection System for Point-of-Care Diagnosis of Lupus Nephritis. Micromachines, 16(2), 156. https://doi.org/10.3390/mi16020156