A Versatile SAW Sensor-Based Modular and Portable Platform for a Multi-Sensor Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. SAW Sensor Manufacturing
2.2. Description of the Prototype
2.2.1. Electronic Nose Description
2.2.2. Operating Algorithm
2.2.3. Gas Cell Design
2.2.4. Interoperability with Other Electronic Noses
2.3. Experimental Procedure
2.3.1. Samples
2.3.2. Measurement Setup
3. Results and Discussion
3.1. Laboratory Test Results
3.2. Statistical Analysis of Sensor Responses
3.2.1. Repeatability and Variance Analysis
3.2.2. ANOVA Results
- SAW1: F = 138.17, p-value = 3.13 × 10−7. The high F-value indicates that the differences between concentrations for this sensor are highly significant, confirming its robust and consistent performance.
- SAW2: F = 7.77, p-value = 0.009. Although significant, the lower F-value compared to that of other sensors reflects the limited sensitivity and higher noise observed for this sensor.
- SAW3: F = 97.97, p-value = 1.2 × 10−6. This F-value indicates clear differences between responses at various concentrations, although the variability within the measurements remains higher than for SAW1 and SAW4.
- SAW4: F = 108.78, p-value = 7.98 × 10−7. This sensor exhibits a strong ability to differentiate between concentrations, though with slightly more variability than SAW1.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aslam, M.Z.; Zhang, H.; Sreejith, V.S.; Naghdi, M.; Ju, S. Advances in the Surface Acoustic Wave Sensors for Industrial Applications: Potentials, Challenges, and Future Directions: A Review. Measurement 2023, 222, 113657. [Google Scholar] [CrossRef]
- Santos, J.P.; Sayago, I.; Aleixandre, M. Air Quality Monitoring Using Nanosensors In Nanomaterials for Air Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 9–31. [Google Scholar] [CrossRef]
- Panneerselvam, G.; Thirumal, V.; Pandya, H.M. Review of Surface Acoustic Wave Sensors for the Detection and Identification of Toxic Environmental Gases/Vapours. Arch. Acoust. 2018, 43, 357–367. [Google Scholar] [CrossRef]
- Rana, L.; Gupta, R.; Kshetrimayum, R.; Tomar, M.; Gupta, V. Fabrication of Surface Acoustic Wave Based Wireless NO2 Gas Sensor. Surf. Coat. Technol. 2018, 343, 89–92. [Google Scholar] [CrossRef]
- Zhou, L.; Hu, Z.; Wang, P.; Gao, N.; Zhai, B.; Ouyang, M.; Zhang, G.; Chen, B.; Luo, J.; Jiang, S.; et al. Enhanced NO2 Sensitivity of SnO2 SAW Gas Sensors by Facet Engineering. Sens. Actuators B Chem. 2022, 361, 131735. [Google Scholar] [CrossRef]
- Mahanti, N.K.; Shivashankar, S.; Chhetri, K.B.; Kumar, A.; Rao, B.B.; Aravind, J.; Swami, D.V. Enhancing Food Authentication through E-Nose and E-Tongue Technologies: Current Trends and Future Directions. Trends Food Sci. Technol. 2024, 150, 104574. [Google Scholar] [CrossRef]
- Nuhoglu, D.; Tasaltin, C.; Gurol, I. QCM and SAW Gas and VOC Sensors Based on Metal Oxide Composites (Principles, Fabrication, Sensing Materials, and Performances). In Complex and Composite Metal Oxides for Gas VOC and Humidity Sensors Volume 1; Elsevier: Amsterdam, The Netherlands, 2024; pp. 223–252. [Google Scholar] [CrossRef]
- Lu, L.; Hu, Z.; Hu, X.; Li, D.; Tian, S. Electronic Tongue and Electronic Nose for Food Quality and Safety. Food Res. Int. 2022, 162, 112214. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Banerjee, S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. Sensors 2022, 22, 820. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Lee, S.S. Simultaneous Detection of Exosomal MicroRNAs Isolated from Cancer Cells Using Surface Acoustic Wave Sensor Array with High Sensitivity and Reproducibility. Micromachines 2024, 15, 249. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Pi, Y.; Lu, W.; Wang, F.; Pan, F.; Li, F.; Jia, S.; Shi, J.; Deng, S.; Chen, M. Label-Free and High-Sensitive Detection of Human Breast Cancer Cells by Aptamer-Based Leaky Surface Acoustic Wave Biosensor Array. Biosens. Bioelectron. 2014, 60, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, K.; Westerhausen, C. Recent Advances of Surface Acoustic Wave-Based Sensors for Noninvasive Cell Analysis. Curr. Opin. Biotechnol. 2023, 79, 102879. [Google Scholar] [CrossRef] [PubMed]
- Rizzato, S.; Monteduro, A.G.; Buja, I.; Maruccio, C.; Sabella, E.; De Bellis, L.; Luvisi, A.; Maruccio, G. Optimization of SAW Sensors for Nanoplastics and Grapevine Virus Detection. Biosensors 2023, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Matatagui, D.; Fernández, M.J.; Fontecha, J.; Santos, J.P.; Gràcia, I.; Cané, C.; Horrillo, M.C. Love-Wave Sensor Array to Detect, Discriminate and Classify Chemical Warfare Agent Simulants. Sens. Actuators B Chem. 2012, 175, 173–178. [Google Scholar] [CrossRef]
- Aleksandrova, M.; Badarov, D. Recent Progress in the Topologies of the Surface Acoustic Wave Sensors and the Corresponding Electronic Processing Circuits. Sensors 2022, 22, 4917. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, W.; Fu, W.; Lv, H.; Zu, X.; Guo, Y.; Gibson, D.; Fu, Y.Q. Advances in Sensing Mechanisms and Micro/Nanostructured Sensing Layers for Surface Acoustic Wave-Based Gas Sensors. J. Mater. Chem. A Mater. 2023, 11, 9216–9238. [Google Scholar] [CrossRef]
- Sayago, I.; Matatagui, D.; Fernández, M.J.; Fontecha, J.L.; Jurewicz, I.; Garriga, R.; Muñoz, E. Graphene Oxide as Sensitive Layer in Love-Wave Surface Acoustic Wave Sensors for the Detection of Chemical Warfare Agent Simulants. Talanta 2016, 148, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Matatagui, D.; Martí, J.; Fernández, M.J.; Fontecha, J.L.; Gutiérrez, J.; Grcia, I.; Cané, C.; Horrillo, M.C. Chemical Warfare Agents Simulants Detection with an Optimized SAW Sensor Array. Sens. Actuators B Chem. 2011, 154, 199–205. [Google Scholar] [CrossRef]
- Meléndez, F.; Sánchez, R.; Fernández, J.Á.; Belacortu, Y.; Bermúdez, F.; Arroyo, P.; Martín-Vertedor, D.; Lozano, J. Design of a Multisensory Device for Tomato Volatile Compound Detection Based on a Mixed Metal Oxide—Electrochemical Sensor Array and Optical Reader. Micromachines 2023, 14, 1761. [Google Scholar] [CrossRef] [PubMed]
- González, V.; Meléndez, F.; Arroyo, P.; Godoy, J.; Díaz, F.; Suárez, J.I.; Lozano, J. Electro-Optical Nose for Indoor Air Quality Monitoring. Chemosensors 2023, 11, 535. [Google Scholar] [CrossRef]
- Poling, B.E.; Prausnitz, J.M.; O’connell, J.P. The Properties of Gases and Liquids, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2001; Volume 123. [Google Scholar]
Sensor | Oscillation Frequency Without Polymer | Gain | Applied Polymer | Δf with Polymer |
---|---|---|---|---|
Reference SAW | 163.95 MHz | −22 dB | None | - |
SAW 1 | 166.4 MHz | −22 dB | Polyvinyl acetate (PVA) | −300 KHz |
SAW 2 | 165 MHz | −21.5 dB | Polystyrene (PS) | −300 KHz |
SAW 3 | 163 MHz | −47.753 dB | Polydimethylsiloxane (PDMS) | +300 KHz |
SAW4 | 163 MHz | −21 dB | Polyethylene glycol (PEG) | +300 KHz |
Solution | Polymer (g) | Solvent (mL) | Polymer Brand | Polymer Catalog Number |
---|---|---|---|---|
PVA + H2O | 0.04023 | 20.1 | Sigma-Aldrich | 341584 |
PDMS + dichloromethane | 0.0423 | 21.32 | Sigma-Aldrich | 9016006 |
PS + xylene | 0.0384 | 19.2 | Sigma-Aldrich | 430102 |
PEG + dichloromethane | 0.03857 | 19.2 | Dow Chemical | Carbowax-1000 |
Compound | Molecular Weight | Pi-pure | Density (g/cm3) | Xwater | Xi | Pi (kPa) | C (ppm) |
---|---|---|---|---|---|---|---|
Acetone (921.1 ppm) | 58.0791 | 37.82 | 0.790 | 0.550 | 0.0014 | 0.0933 | 921.1 |
Acetone (1991 ppm) | 58.0791 | 37.82 | 0.790 | 0.761 | 0.0041 | 0.20169 | 1991 |
Ethanol (976.1 ppm) | 46.0684 | 10.47 | 0.789 | 0.538 | 0.0051 | 0.09888 | 976.1 |
Ethanol (1994.5 ppm) | 46.0684 | 10.47 | 0.789 | 0.522 | 0.0103 | 0.20205 | 1994.5 |
Sensor | Concentration (ppm) | Mean (Δf) | Standard Deviation (σ) | CV (%) |
---|---|---|---|---|
SAW1 | 2000 (Acetone) | 3179.67 | 318.51 | 10.02 |
1000 (Acetone) | 721.67 | 43.82 | 6.07 | |
2000 (Ethanol) | 1470.67 | 74.45 | 5.06 | |
1000 (Ethanol) | 820.33 | 58.59 | 7.14 | |
SAW2 | 2000 (Acetone) | 204.67 | 12.66 | 6.19 |
1000 (Acetone) | 218.67 | 73.64 | 33.68 | |
2000 (Ethanol) | 264.67 | 22.30 | 8.43 | |
1000 (Ethanol) | 350.67 | 24.91 | 7.10 | |
SAW3 | 2000 (Acetone) | 883.67 | 84.36 | 9.55 |
1000 (Acetone) | 253.00 | 43.55 | 17.22 | |
2000 (Ethanol) | 292.67 | 28.11 | 9.61 | |
1000 (Ethanol) | 283.67 | 39.02 | 13.75 | |
SAW4 | 2000 (Acetone) | 1736.33 | 207.07 | 11.93 |
1000 (Acetone) | 398.33 | 74.27 | 18.65 | |
2000 (Ethanol) | 458.67 | 41.48 | 9.04 | |
1000 (Ethanol) | 310.00 | 19.00 | 6.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Luna, Á.; Arroyo, P.; Matatagui, D.; Sánchez-Vicente, C.; Lozano, J. A Versatile SAW Sensor-Based Modular and Portable Platform for a Multi-Sensor Device. Micromachines 2025, 16, 170. https://doi.org/10.3390/mi16020170
López-Luna Á, Arroyo P, Matatagui D, Sánchez-Vicente C, Lozano J. A Versatile SAW Sensor-Based Modular and Portable Platform for a Multi-Sensor Device. Micromachines. 2025; 16(2):170. https://doi.org/10.3390/mi16020170
Chicago/Turabian StyleLópez-Luna, Ángel, Patricia Arroyo, Daniel Matatagui, Carlos Sánchez-Vicente, and Jesús Lozano. 2025. "A Versatile SAW Sensor-Based Modular and Portable Platform for a Multi-Sensor Device" Micromachines 16, no. 2: 170. https://doi.org/10.3390/mi16020170
APA StyleLópez-Luna, Á., Arroyo, P., Matatagui, D., Sánchez-Vicente, C., & Lozano, J. (2025). A Versatile SAW Sensor-Based Modular and Portable Platform for a Multi-Sensor Device. Micromachines, 16(2), 170. https://doi.org/10.3390/mi16020170