Effect of Alloying and Reinforcing Nanocomposites on the Mechanical, Tribological, and Wettability Properties of Pulse-Electrodeposited Ni Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterisation of Nanocrystalline Coating
2.2. Mechanical Characterisation
3. Results
3.1. Surface Morphology
3.2. Surface Roughness
3.3. Nanohardness
3.4. Sliding Wear Behaviour
3.5. Nanotribology Analysis
3.6. Wettability
4. Conclusions
- Grain size reduction of ~7%–~43% with the incorporation of alloying and reinforcing nanocomposites.
- Improved surface characteristics, as evidenced by surface roughness and bearing area curve analyses.
- Enhanced coating hardness, with increases of ~11%–~69% when compared with the Ni coating, and with Ni-Co/ZrO2 achieving the highest hardness of 5.95 GPa.
- Superior wear resistance, with Ni-Co/Al2O3 demonstrating a ~51% improvement over pure Ni coatings.
- Tribological property enhancements, with improvements ranging from ~2% to ~65%, confirmed through nanotribological assessments.
- Hydrophilic behaviour in all coatings, with Ni-Co/ZrO2 exhibiting the highest contact angle and Ni-Co/SiC, the lowest.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, B.Y.; Nie, X.; Chen, Y. Effects of Surface Coating Preparation and Sliding Modes on Titanium Oxide Coated Titanium Alloy for Aerospace Applications. Int. J. Aerosp. Eng. 2014, 2014, 64036. [Google Scholar] [CrossRef]
- Baptista, A.; Silva FJ, G.; Porteiro, J.; Míguez, J.L.; Pinto, G.; Fernandes, L. On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications. Procedia Manuf. 2018, 17, 746–757. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Zhang, R. Application and Development Progress of Cr-Based Surface Coatings in Nuclear Fuel Element: I. Selection, Preparation, and Characteristics of Coating Materials. Coatings 2020, 10, 808. [Google Scholar] [CrossRef]
- Wang, W.; Hou, F.Y.; Wang, H.; Guo, H.T. Fabrication and Characterization of Ni–ZrO2 Composite Nano-Coatings by Pulse Electrodeposition. Scr. Mater. 2005, 53, 613–618. [Google Scholar] [CrossRef]
- Lajevardi, S.A.; Shahrabi, T. Effects of Pulse Electrodeposition Parameters on the Properties of Ni–TiO2 Nanocomposite Coatings. Appl. Surf. Sci. 2010, 256, 6775–6781. [Google Scholar] [CrossRef]
- Wasekar, N.P.; Bathini, L.; Ramakrishna, L.; Rao, D.S.; Padmanabham, G. Pulsed Electrodeposition, Mechanical Properties and Wear Mechanism in Ni-W/SiC Nanocomposite Coatings Used for Automotive Applications. Appl. Surf. Sci. 2020, 527, 146896. [Google Scholar] [CrossRef]
- Song, R.; Zhang, S.; He, Y.; Li, H.; Fan, Y.; He, T.; Zhang, Y.; Xiang, Y.; Zhang, H. Effect of H-MWCNTs Addition on Anti-Corrosion Performance and Mechanical Character of Ni-Cu/H-MWCNTs Composite Coatings Prepared by Pulse Electrodeposition Technique. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127519. [Google Scholar] [CrossRef]
- Xia, F.; Li, C.; Ma, C.; Li, Q.; Xing, H. Effect of Pulse Current Density on Microstructure and Wear Property of Ni-TiN Nanocoatings Deposited via Pulse Electrodeposition. Appl. Surf. Sci. 2021, 538, 148139. [Google Scholar] [CrossRef]
- Zhou, Y.; Xie, F.Q.; Wu, X.Q.; Zhao, W.D.; Chen, X. A Novel Plating Apparatus for Electrodeposition of Ni-SiC Composite Coatings Using Circulating-Solution Co-Deposition Technique. J. Alloys Compd. 2016, 699, 366–377. [Google Scholar] [CrossRef]
- Shakoor, R.A.; Kahraman, R.; Waware, U.; Wang, Y.; Gao, W. Properties of Electrodeposited Ni–B–Al2O3 Composite Coatings. Mater. Des. 2014, 64, 127–135. [Google Scholar] [CrossRef]
- Akbarpour, M.R.; Gharibi Asl, F.; Rashedi, H. Anti-Corrosion and Microstructural Properties of Nanostructured Ni-Co Coating Prepared by Pulse-Reverse Electrochemical Deposition Method. J. Mater. Eng. Perform. 2024, 33, 94–101. [Google Scholar] [CrossRef]
- Vamsi MV, N.; Wasekar, N.P.; Sundararajan, G. Influence of Heat Treatment on Microstructure and Mechanical Properties of Pulse Electrodeposited Ni-W Alloy Coatings. Surf. Coat. Technol. 2017, 319, 403–414. [Google Scholar] [CrossRef]
- Hou, K.H.; Chen, Y.C. Preparation and Wear Resistance of Pulse Electrodeposited Ni–W/Al2O3 Composite Coatings. Appl. Surf. Sci. 2011, 257, 6340–6346. [Google Scholar] [CrossRef]
- Adelkhani, H.; Arshadi, M.R. Properties of Fe–Ni–Cr Alloy Coatings by Using Direct and Pulse Current Electrodeposition. J. Alloys Compd. 2009, 476, 234–237. [Google Scholar] [CrossRef]
- Sun, J.; Du, D.X.; Lv, H.F.; Zhou, L.; Wang, Y.G.; Qi, C.G. Microstructure and Corrosion Resistance of Pulse Electrodeposited Ni-Cr Coatings. Surf. Eng. 2015, 31, 406–411. [Google Scholar] [CrossRef]
- Firouzi-Nerbin, H.; Nasirpouri, F.; Moslehifard, E. Pulse Electrodeposition and Corrosion Properties of Nanocrystalline Nickel-Chromium Alloy Coatings on Copper Substrate. J. Alloys Compd. 2020, 822, 153712. [Google Scholar] [CrossRef]
- Liu, C.; Huang, X.; Xu, R.; Mai, Y.; Zhang, L.; Jie, X. Microstructure and Properties of Nanocrystalline Ni-Mo Coatings Prepared by Ultrasound-Assisted Pulse Electrodeposition. J. Mater. Eng. Perform. 2021, 30, 2514–2525. [Google Scholar] [CrossRef]
- Xu, Y.; Gao, Y.; Fan, M.; Lu, X.; Chen, Y.; Zhao, Q. Preparation and Investigation of Pulse Co-Deposited Duplex Nanoparticles Reinforced Ni-Mo Coatings under Different Electrodeposition Parameters. Ceram. Int. 2022, 48, 29629–29640. [Google Scholar] [CrossRef]
- Rezaeiolum, A.; Aliofkhazraei, M.; Karimzadeh, A.; Rouhaghdam, A.S.; Miresmaeili, R. Electrodeposition of Ni–Mo and Ni–Mo-(Nano Al2O3) Multilayer Coatings. Surf. Eng. 2018, 34, 423–432. [Google Scholar] [CrossRef]
- Zhou, X.W.; Shen, Y.F.; Jin, H.M.; Zheng, Y.Y. Microstructure and Depositional Mechanism of Ni–P Coatings with Nano-Ceria Particles by Pulse Electrodeposition. Trans. Nonferrous Met. Soc. China 2012, 22, 1981–1988. [Google Scholar] [CrossRef]
- Zoikis-Karathanasis, A.; Pavlatou, E.A.; Spyrellis, N. Pulse Electrodeposition of Ni–P Matrix Composite Coatings Reinforced by SiC Particles. J. Alloys Compd. 2010, 494, 396–403. [Google Scholar] [CrossRef]
- Torabinejad, V.; Aliofkhazraei, M.; Rouhaghdam, A.S.; Allahyarzadeh, M.H. Electrodeposition of Ni–Fe–Mn/Al2O3 Functionally Graded Nanocomposite Coatings. Surf. Eng. 2017, 33, 122–130. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, X.; Zhu, D. Mechanical Electrodeposition of Ni-Mn Alloy. Mater. Manuf. Process. 2013, 28, 1301–1304. [Google Scholar] [CrossRef]
- Ma, C.; He, H.; Xia, F.; Xiao, Z.; Liu, Y. Performance of Ni–SiC Composites Deposited Using Magnetic-Field-Assisted Electrodeposition under Different Magnetic-Field Directions. Ceram. Int. 2023, 49, 35907–35916. [Google Scholar] [CrossRef]
- Georgescu, V.; Daub, M. Magnetic Field Effects on Surface Morphology and Magnetic Properties of Co–Ni–P Films Prepared by Electrodeposition. Surf. Sci. 2006, 600, 4195–4199. [Google Scholar] [CrossRef]
- Afroukhteh, S.; Dehghanian, C.; Emamy, M. Preparation of the Ni-P Composite Coating Co-Deposited by Nano TiC Particles and Evaluation of It’s Corrosion Property. Appl. Surf. Sci. 2012, 258, 2597–2601. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, Q.; Ma, J. The Hydrogen Generation from Alkaline NaBH4 Solution by Using Electroplated Amorphous Co-Ni-P Film Catalysts. Appl. Surf. Sci. 2013, 273, 253–256. [Google Scholar] [CrossRef]
- Tian, L.; Xu, J.; Qiang, C. The Electrodeposition Behaviors and Magnetic Properties of Ni–Co Films. Appl. Surf. Sci. 2011, 257, 4689–4694. [Google Scholar] [CrossRef]
- Xia, F.; Yan, P.; Ma, C.; Zhang, Y.; Li, H. Pulse-Electrodeposited Ni/W-Al2O3 Nanocomposites at Different Current Densities. J. Nanopart. Res. 2023, 25, 208. [Google Scholar] [CrossRef]
- Chen, L.; Wang, L.; Zeng, Z.; Xu, T. Influence of Pulse Frequency on the Microstructure and Wear Resistance of Electrodeposited Ni-Al2O3 Composite Coatings. Surf. Coat. Technol. 2006, 201, 599–605. [Google Scholar] [CrossRef]
- Gül, H.; Uysal, M.; Akbulut, H.; Alp, A. Effect of PC Electrodeposition on the Structure and Tribological Behavior of Ni-Al2O3 Nanocomposite Coatings. Surf. Coat. Technol. 2014, 258, 1202–1211. [Google Scholar] [CrossRef]
- Ghaziof, S.; Gao, W. The Effect of Pulse Electroplating on Zn-Ni Alloy and Zn-Ni-Al2O3 Composite Coatings. J. Alloys Compd. 2014, 622, 918–924. [Google Scholar] [CrossRef]
- Chang, L.M.; An, M.Z.; Shi, S.Y. Microstructure and Characterization of Ni-Co/Al2O3 Composite Coatings by Pulse Reversal Electrodeposit. Mater. Chem. Phys. 2006, 100, 395–399. [Google Scholar] [CrossRef]
- Fini, M.H.; Amadeh, A. Improvement of Wear and Corrosion Resistance of AZ91 Magnesium Alloy by Applying Ni−SiC Nanocomposite Coating via Pulse Electrodeposition. Trans. Nonferr. Met. Soc. China 2013, 23, 2914–2922. [Google Scholar] [CrossRef]
- Gyftou, P.; Pavlatou, E.A.; Spyrellis, N. Effect of Pulse Electrodeposition Parameters on the Properties of Ni/Nano-SiC Composites. Appl. Surf. Sci. 2008, 254, 5910–5916. [Google Scholar] [CrossRef]
- Sliem, M.H.; Shahzad, K.; Sivaprasad, V.N.; Shakoor, R.A.; Abdullah, A.M.; Fayyaz, O.; Kahraman, R.; Umer, M.A. Enhanced Mechanical and Corrosion Protection Properties of Pulse Electrodeposited NiP-ZrO2 Nanocomposite Coatings. Surf. Coat. Technol. 2020, 403, 126340. [Google Scholar] [CrossRef]
- Zhang, W.; Ji, C.; Li, B. Synthesis and Properties of Ni-W/ZrO2 Nanocomposite Coating Fabricated by Pulse Electrodeposition. Results Phys. 2019, 13, 10224. [Google Scholar] [CrossRef]
- Bhutta, M.U.; Khan, Z.A.; Garland, N. Wear Performance Analysis of Ni–Al2O3 Nanocomposite Coatings under Nonconventional Lubrication. Materials 2019, 12, 36. [Google Scholar] [CrossRef]
- Bhutta, M.U.; Khan, Z.A. Wear and Friction Performance Evaluation of Nickel Based Nanocomposite Coatings under Refrigerant Lubrication. Tribol. Int. 2020, 148, 106312. [Google Scholar] [CrossRef]
- John, A.; Saeed, A.; Khan, Z.A. Influence of the Duty Cycle of Pulse Electrodeposition-Coated Ni-Al2O3 Nanocomposites on Surface Roughness Properties. Materials 2023, 16, 2192. [Google Scholar] [CrossRef]
- Pawlus, P.; Reizer, R.; Zelasko, W. Prediction of Parameters of Equivalent Sum Rough Surfaces. Materials 2020, 13, 4898. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B. Surface Roughness Analysis and Measurement Techniques. In Modern Tribology Handbook: Volume One: Principles of Tribology; CRC Press: Boca Raton, FL, USA, 2000; pp. 49–119. [Google Scholar] [CrossRef]
- Profile Parameters from ISO 4287—Surface Metrology Guide—Digital Surf. Available online: https://guide.digitalsurf.com/en/guide-iso-4287-parameters.html (accessed on 13 January 2025).
- Dai, P.Q.; Zhong, Y.H.; Zhou, X. Corrosion Characteristic of Pulsed Electrodeposition Ni-Co/SiC Nanocomposite Coating. Surf. Eng. 2011, 27, 71–76. [Google Scholar] [CrossRef]
- Qiao, G.; Wang, S.; Wang, X.; Chen, X.; Wang, X.; Cui, H. Preparation and Corrosion Protection Performance of a Pulse Co-Deposited Ni/Co/SiO2 Hydrophobic Composite Coating. ChemPhysMater 2022, 1, 119–125. [Google Scholar] [CrossRef]
- Yu, X.; Ma, Z.; Li, J.; Ma, C. Study of the Novel Ni/Co–SiC Coatings Deposited by Pulse Current Electrodeposition. Influence of the Pulse Frequency and the Duty Cycle. Int. J. Electrochem. Sci. 2021, 16, 21036. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, Y.F. Fabrication of Ni-Co-SiC Composite Coatings by Pulse Electrodeposition—Effects of Duty Cycle and Pulse Frequency. Surf. Coat. Technol. 2013, 216, 282–288. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, D.; Ma, Z. Effects of Duty Cycle and Pulse Frequency on Microstructures and Properties of Electrodeposited Ni–Co–SiC Nanocoatings. Ceram. Int. 2020, 46, 12128–12137. [Google Scholar] [CrossRef]
- Guglielmi, N. Kinetics of the Deposition of Inert Particles from Electrolytic Baths. J. Electrochem. Soc. 1972, 119, 1009. [Google Scholar] [CrossRef]
- Storonkin, A.V.; Lagunov, M.D.; Beloko-skov, V.I.; Guglielmi, N. Modern Aspects of Electrochemistry; Plenum Press: New York, NY, USA, 1966. [Google Scholar]
C | Si | Mn | P | S |
---|---|---|---|---|
0.09 | 0.25 | 0.91 | 0.71 | 0.5 |
Chemical Constituent | Concentration (g/L) | Property |
---|---|---|
Nickel Sulphate (NiSO4∙6H2O) | 265 | Watts Solution/Nickel Source |
Nickel Chloride (NiCl2∙6H2O) | 48 | |
Boric Acid (H3BO3) | 31 | |
Cobalt Sulphate (CoSO4∙6H2O) | 40 | Cobalt Source |
Aluminium Oxide (Al2O3) | 10 | Al2O3 Source |
Silicon Carbide (SiC) | 10 | SiC Source |
Zirconium Dioxide (ZrO2) | 10 | ZrO2 Source |
Condition | Parameter |
---|---|
Current Density (A/dm2) | 3 |
Duty Cycle (%) | 20 |
Time (min) | 60 |
Temperature (°C) | 60 |
Stir Speed (rpm) | 300 |
pH | 4.2 ± 0.2 |
Cathode | EN1A |
Anode | Nickel Plate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
John, A.; Saeed, A.; Khan, Z.A. Effect of Alloying and Reinforcing Nanocomposites on the Mechanical, Tribological, and Wettability Properties of Pulse-Electrodeposited Ni Coatings. Micromachines 2025, 16, 175. https://doi.org/10.3390/mi16020175
John A, Saeed A, Khan ZA. Effect of Alloying and Reinforcing Nanocomposites on the Mechanical, Tribological, and Wettability Properties of Pulse-Electrodeposited Ni Coatings. Micromachines. 2025; 16(2):175. https://doi.org/10.3390/mi16020175
Chicago/Turabian StyleJohn, Aashish, Adil Saeed, and Zulfiqar Ahmad Khan. 2025. "Effect of Alloying and Reinforcing Nanocomposites on the Mechanical, Tribological, and Wettability Properties of Pulse-Electrodeposited Ni Coatings" Micromachines 16, no. 2: 175. https://doi.org/10.3390/mi16020175
APA StyleJohn, A., Saeed, A., & Khan, Z. A. (2025). Effect of Alloying and Reinforcing Nanocomposites on the Mechanical, Tribological, and Wettability Properties of Pulse-Electrodeposited Ni Coatings. Micromachines, 16(2), 175. https://doi.org/10.3390/mi16020175