Production of Uniform Droplets and Lipid Nanoparticles Using Perfluoropolyether-Based Microfluidic Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of PDMS, PFPE, PFPE Co-Polymer Slab
2.3. Fabrication of Microfluidic Device
2.4. Characterization of PFPE-Based Slabs
2.5. Production of Emulsion Droplets and Lipid Nanoparticles
3. Results and Discussion
3.1. Fabrication of the Microfluidic Device
3.2. Characteristics of the PFPE-Based Material Slab
3.3. Synthesis of Lipid Nanoparticles
3.4. Production of Emulsion Droplets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.; Liu, J.; Wang, X.; Feng, L.; Wu, J.; Zhu, X.; Wen, W.; Gon, X. Organ-on-a-chip: Recent breakthroughs and future prospects. BioMed. Eng. OnLine 2020, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Liu, H.; Jiang, Y.; Lin, J.M. Recent advances in microfluidics combined with mass spectrometry: Technologies and applications. Lab Chip 2013, 13, 3309–3322. [Google Scholar] [CrossRef] [PubMed]
- Mashaghi, S.; Abbaspourrad, A.; Weitz, D.A.; Oijen, A.M.V. Droplet microfluidics: A tool for biology, chemistry and nanotechnology. Trends Anal. Chem. 2016, 82, 118–125. [Google Scholar] [CrossRef]
- Nie, J.; Gao, Q.; Wang, Y.; Zeng, J.; Zhao, H.; Sun, Y.; Shen, J.; Ramezani, H.; Fu, Z.; Liu, Z.; et al. Vessel-on-a-chip with hydrogel-based microfluidics. Small 2018, 14, 1802368. [Google Scholar] [CrossRef]
- Cui, P.; Wang, S. Application of microfluidic chip technology in pharmaceutical analysis: A review. J. Pharm. Anal. 2019, 9, 238–247. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, G.; Hui, Y.; Ranaweera, S.; Zhao, C.-X. Microfluidic nanoparticles for drug delivery. Small 2022, 18, 2106580. [Google Scholar] [CrossRef]
- Ren, K.; Zhou, J.; Wu, H. Materials for Microfluidic Chip Fabrication. Acc. Chem. Res. 2013, 46, 11. [Google Scholar] [CrossRef]
- Zhang, X.; Haswell, S.J. Materials Matter in Microfluidic Devices. MRS Bull. 2006, 31, 95–99. [Google Scholar] [CrossRef]
- Bilican, I.; Guler, M.T. Assessment of PMMA and polystyrene based microfluidic chips fabricated using CO2 laser machining. Appl. Surf. Sci. 2020, 12, 147642. [Google Scholar] [CrossRef]
- Kim, E.; Cho, M.; Choi, I.; Choi, S. Fabrication of Perfluoropolyether Microfluidic Devices Using Laser Engraving for Uniform Droplet Production. Micromachines 2024, 15, 599. [Google Scholar] [CrossRef]
- Jonker, D.; Veltkamp, H.W.; Sanders, R.G.P.; Schlautmann, S.; Giannasi, K.; Tiggelaar, R.M.; Gardeniers, J.G.E. A factorial design approach to fracture pressure tests of microfluidic BF33 and D263T glass chips with side-port capillary connections. J. Micromech. Microeng. 2019, 29, 035011. [Google Scholar] [CrossRef]
- Anbari, A.; Chien, H.-T.; Datta, S.S.; Deng, W.; Weitz, D.A.; Fan, J. Microfluidic Model Porous Media: Fabrication and Applications. Small 2018, 14, 1703575. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.C.; Whitesides, G.M. Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Acc. Chem. Res. 2002, 35, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Cho, Y.; Park, M. Microchannel Fabrication on Glass Materials for Microfluidic Devices. Int. J. Precis. Eng. Manuf. 2019, 20, 479–495. [Google Scholar] [CrossRef]
- Regehr, K.J.; Domenech, M.; Koepsel, J.T.; Carver, K.C.; Ellison-Zelski, S.J.; Murphy, W.L.; Schuler, L.A.; Alarid, E.T.; Beebe, D.J. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 2009, 9, 2132–2139. [Google Scholar] [CrossRef]
- Wu, Z.; Hjort, K. Surface modification of PDMS by gradient-induced migration of embedded Pluronic. Lab Chip 2009, 9, 1500–1503. [Google Scholar] [CrossRef]
- Devaraju, N.S.G.K.; Unger, M.A. Multilayer soft lithography of perfluoropolyether based elastomer for microfluidic device fabrication. Lab Chip 2011, 11, 1962–1967. [Google Scholar] [CrossRef]
- Yang, Y.-W.; Hentschel, J.; Chen, Y.-C.; Lazari, M.; Zeng, H.; Dam, R.M.V.; Guan, Z. “Clicked” fluoropolymer elastomers as robust materials for potential microfluidic device applications. J. Mater. Chem. 2012, 22, 1100–1106. [Google Scholar] [CrossRef]
- Vitale, A.; Bongiovanni, R.; Ameduri, B. Fluorinated Oligomers and Polymers in Photopolymerization. Chem. Rev. 2015, 115, 8835–8866. [Google Scholar] [CrossRef]
- Molena, E.; Credi, C.; Marco, C.D.; Levi, M.; Turri, S.; Simeone, G. Protein antifouling and fouling-release in perfluoropolyether surfaces. Appl. Surf. Sci. 2014, 309, 160–167. [Google Scholar] [CrossRef]
- Choi, I.; Ahn, G.; Kim, E.; Hwang, S.; Park, H.; Yoon, S.; Lee, J.; Cho, Y.; Nam, J.; Choi, S. Microfluidic Bioreactor with Fibrous Micromixers for In Vitro mRNA Transcription. Nano Lett. 2023, 23, 7897–7905. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, M.; Martin, E.; Enot, M.; Robbe, O.; Rapisarda, C.; Nicolai, M.-C.; Deliot, A.; Tabeling, P.; Authelin, J.-R.; Nakach, M.; et al. Optimal self-assembly of lipid nanoparticles (LNP) in a ring micromixer. Sci. Rep. 2022, 12, 9483. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Nie, Z.; Zhang, H.; Paquet, C.; Seo, M.; Garstecki, P.; Kumacheva, E. Screening of the Effect of Surface Energy of Microchannels on Microfluidic Emulsification. Langmuir 2007, 23, 8010–8014. [Google Scholar] [CrossRef] [PubMed]
- Barbier, V.; Tatoulian, M.; Li, H.; Arefi-Khonsari, F.; Ajdari, A.; Tabeling, P. Stable Modification of PDMS Surface Properties by Plasma Polymerization: Application to the Formation of Double Emulsions in Microfluidic Systems. Langmuir 2006, 22, 5230–5232. [Google Scholar] [CrossRef]
- Graubner, V.-M.; Jordan, R.; Nuyken, O.; Schnyder, B.; Lippert, T.; Kötz, R.; Wokaun, A. Photochemical Modification of Cross-Linked Poly(dimethylsiloxane) by Irradiation at 172 nm. Macromolecules 2004, 37, 5936–5943. [Google Scholar] [CrossRef]
- Klee, J.L.D.; Thelen, H.; Bienert, H.; Vorwerk, D.; Höcker, H. Improvement of haemocompatibility of metallic stents by polymer coating. J. Mater. Sci. Mater. Med. 1999, 10, 443. [Google Scholar]
- Mehta, G.; Kiel, M.J.; Lee, J.W.; Kotov, N.; Linderman, J.J.; Takayama, S. Polyelectrolyte-Clay-Protein Layer Films on Microfluidic PDMS Bioreactor Surfaces for Primary Murine Bone Marrow Culture. Adv. Funct. Mater. 2007, 17, 2701–2709. [Google Scholar] [CrossRef]
- Roman, G.T.; Culvertson, C.T. Surface Engineering of Poly(dimethylsiloxane) Microfluidic Devices Using Transition Metal Sol−Gel Chemistry. Langmuir 2006, 22, 4445–4451. [Google Scholar] [CrossRef]
- Sui, G.; Wang, J.; Lee, C.-C.; Lu, W.; Lee, S.P.; Leyton, J.V.; Wu, A.M.; Tseng, H.-R. Solution-Phase Surface Modification in Intact Poly(dimethylsiloxane) Microfluidic Channels. Anal. Chem. 2006, 78, 5543–5551. [Google Scholar] [CrossRef]
- Oh, D.; Choi, I.; Ryu, Y.; Ahn, G.; Ryu, T.; Choi, S. Solvent-resistant Perfluoropolyether Microfluidic Devices with Microfibrous Channels for the Production of Poly(ε-caprolactone) Microspheres Containing Dexamethasone. ACS Appl. Polym. Mater. 2023, 5, 2062–2069. [Google Scholar] [CrossRef]
- Ahn, G.; Choi, I.; Ryu, T.; Ryu, Y.; Oh, D.; Kang, H.; Kang, M.; Choi, S. Continuous production of lipid nanoparticles by multiple- splitting in microfluidic devices with chaotic microfibrous channels. Colloids Surf. B Biointerfaces 2023, 224, 113212. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, M.; Kim, E.S.; Ryu, T.-K.; Choi, I.; Choi, S.-W. Production of Uniform Droplets and Lipid Nanoparticles Using Perfluoropolyether-Based Microfluidic Devices. Micromachines 2025, 16, 179. https://doi.org/10.3390/mi16020179
Cho M, Kim ES, Ryu T-K, Choi I, Choi S-W. Production of Uniform Droplets and Lipid Nanoparticles Using Perfluoropolyether-Based Microfluidic Devices. Micromachines. 2025; 16(2):179. https://doi.org/10.3390/mi16020179
Chicago/Turabian StyleCho, Mincheol, Eun Seo Kim, Tae-Kyung Ryu, Inseong Choi, and Sung-Wook Choi. 2025. "Production of Uniform Droplets and Lipid Nanoparticles Using Perfluoropolyether-Based Microfluidic Devices" Micromachines 16, no. 2: 179. https://doi.org/10.3390/mi16020179
APA StyleCho, M., Kim, E. S., Ryu, T.-K., Choi, I., & Choi, S.-W. (2025). Production of Uniform Droplets and Lipid Nanoparticles Using Perfluoropolyether-Based Microfluidic Devices. Micromachines, 16(2), 179. https://doi.org/10.3390/mi16020179