Transferable Integrated Optical SU8 Devices: From Micronic Waveguides to 1D-Nanostructures
Abstract
:1. Introduction
2. Results and Discussions
2.1. Transportable SU8 Micronic Waveguiding Structures
2.1.1. UV Lithography Process and Transfer to Hybrid Medium
2.1.2. Optical Characterizations of the Transportable Waveguiding Structures
2.2. SU8 1D-Nanostructures: From Nanowires to Nanotubes
2.2.1. Fabrication by the Wetting Template Method
2.2.2. Optical Coupling and Propagation in 1D-Nanostructures
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Eldada, L.; Shacklette, L.W. Advances in Polymer Integrated Optics. IEEE J. Sel. Top. Quant. Elect. 2000, 6, 54–68. [Google Scholar] [CrossRef]
- Ma, H.; Jen, A.K.-Y.; Dalton, L.R. Polymer-Based Optical Waveguides: Materials, Processing, and Devices. Adv. Mat. 2002, 14, 1339–1365. [Google Scholar] [CrossRef]
- Bêche, B.; Pelletier, N.; Hierle, R.; Goullet, A.; Landesman, J.P.; Gaviot, E.; Zyss, J. Conception of Optical Integrated Circuits on Polymers. Microelectron. J. 2006, 37, 421–427. [Google Scholar] [CrossRef]
- Nordström, M.; Zauner, D.A.; Boisen, A.; Hübner, J. Single-Mode Waveguides with SU-8 Polymer Core and Cladding for MOEMS Applications. J. Lightwave Technol. 2007, 25, 1284–1289. [Google Scholar] [CrossRef]
- Airoudj, A.; Debarnot, D.; Bêche, B.; Boulard, B.; Poncin-Epaillard, F. Improvement of the optical transmission of polymer planar waveguide by plasma treatment. Plasma Process. Polym. 2008, 5, 275–288. [Google Scholar] [CrossRef]
- Pelletier, N.; Bêche, B.; Gaviot, E.; Camberlein, L.; Grossard, N.; Polet, F.; Zyss, J. Single-mode rib optical waveguides on SOG/SU-8 polymer and integrated Mach-Zehnder for designing thermal sensors. IEEE Sens. J. 2006, 6, 565–570. [Google Scholar] [CrossRef]
- Pelletier, N.; Bêche, B.; Tahani, N.; Zyss, J.; Camberlein, L.; Gaviot, E. SU-8 waveguiding interferometric micro-sensor for gage pressure measurement. Sens. Actuators A Phys. 2007, 135, 179–184. [Google Scholar] [CrossRef]
- Shew, B.Y.; Cheng, Y.C.; Tsai, Y.H. Monolithic SU-8 micro-interferometer for biochemical detections. Sens. Actuators A Phys. 2008, 141, 299–306. [Google Scholar] [CrossRef]
- Scheuer, J.; Yariv, A. Fabrication and characterization of low-loss polymeric waveguides and micro-resonators. J. Eur. Opt. Soc. Rapid Publ. 2006, 1, 06007. [Google Scholar] [CrossRef]
- Rabiei, P.; Steier, W.H.; Zhang, C.; Dalton, L.R. Polymer micro-ring filters and modulators. J. Lightwave Technol. 2002, 20, 1968–1975. [Google Scholar] [CrossRef]
- Zebda, A.; Camberlein, L.; Bêche, B.; Gaviot, E.; Duval, D.; Zyss, J.; Jézéquel, G.; Solal, F.; Godet, C. Spin coating and plasma process for 2.5D integrated photonics on multilayer polymers. Thin Solid Film 2008, 516, 8668–8674. [Google Scholar] [CrossRef]
- Llobera, A.; Seidemann, V.; Plaza, J.A.; Cadarso, V.J.; Büttgenbach, S. SU-8 optical accelerometer. J. Microelectromech. Syst. 2007, 16, 111–121. [Google Scholar] [CrossRef]
- Tsang, K.C.; Wong, C.-Y.; Pun, E.Y.B. Eu3+-Doped Planar Optical Polymer Waveguide Amplifiers. IEEE Photonics Technol. Lett. 2010, 22, 1024–1026. [Google Scholar] [CrossRef]
- Venugopal Rao, S.; Bettiol, A.A.; Watt, F. Characterization of channel waveguides and tunable microlasers in SU8 doped with rhodamine B fabricated using proton beam writing. J. Phys. D Appl. Phys. 2008, 41, 192002. [Google Scholar] [CrossRef]
- Jang, S.-Y.; Marquez, M.; Sotzing, G.A. Rapid direct nanowriting of conductive polymer via electrochemical oxidative nanolithography. J. Am. Chem. Soc. 2004, 126, 9476–9477. [Google Scholar] [CrossRef] [PubMed]
- Riehn, R.; Charas, A.; Morgado, J.; Cacialli, F. Near-field optical lithography of a conjugated polymer. Appl. Phys. Lett. 2003, 82, 526. [Google Scholar] [CrossRef]
- Hu, Z.; Muls, B.; Gence, L.; Serban, D.A.; Hofkens, J.; Melinte, S.; Nysten, B.; Demoustier-Champagne, S.; Jonas, A.M. High throughput fabrication of organic nanowire devices with preferential internal alignement and improved performance. Nano Lett. 2007, 7, 3639–3644. [Google Scholar] [CrossRef] [PubMed]
- Di Benedetto, F.; Camposeo, A.; Pagliara, S.; Mele, E.; Persano, L.; Stabile, R.; Cingolani, R.; Pisignano, D. Patterning of light-emitting conjugated polymer nanofibers. Nat. Nanotechnol. 2008, 3, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Fasano, V.; Polini, A.; Morello, G.; Moffa, M.; Camposeo, A.; Pisignano, D. Bright light emission and waveguiding in conjugated polymer nanofibers electrospun from organic salt added solutions. Macromolecules 2013, 46, 5935–5942. [Google Scholar]
- De Gennes, P.G. Wetting: Statics and dynamics. Rev. Modern Phys. 1985, 57, 827–863. [Google Scholar] [CrossRef]
- Steinhart, M.; Wendorff, J.H.; Greiner, A.; Wehrspohn, R.B.; Nielsch, K.; Schilling, J.; Choi, J.; Gösele, U. Polymer Nanotubes by Wetting of Ordered Porous Templates. Science 2002, 296, 1997. [Google Scholar] [CrossRef] [PubMed]
- O’Carroll, D.; Lieberwirth, I.; Redmond, G. Microcavity effects and optically pumped lasing in single conjugated polymer nanowires. Nat. Nanotech. 2007, 2, 180–184. [Google Scholar] [CrossRef]
- Panepuccia, R.R.; Martinez, J.A. Novel SU-8 optical waveguide microgripper for simultaneous micromanipulation and optical detection. J. Vac. Sci. Technol. B 2008, 26, 2624–2627. [Google Scholar] [CrossRef]
- Yin, D.; Lunt, E.J.; Rudenko, M.I.; Deamer, D.W.; Hawkins, A.R.; Schmidt, H. Planar optofluidic chip for single particle detection, manipulation, and analysis. Lab Chip 2007, 7, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Qiu, W.; Shao, G.; Wang, W. A new fabrication method for all-PDMS waveguides. Sens. Actuators A Phys. 2013, 204, 44–47. [Google Scholar] [CrossRef]
- Huby, N.; Duvail, J.-L.; Duval, D.; Pluchon, D.; Bêche, B. Light propagation in songlemode polymer nanotubes integrated on photonic circuits. Appl. Phys. Lett. 2011, 99, 113302. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Yang, S.; Tong, L. Modeling of evanescent coupling between two parallel optical nanowires. Appl. Opt. 2007, 46, 1429–1434. [Google Scholar] [CrossRef] [PubMed]
- Bigeon, J.; Huby, N.; Duvail, J.-L.; Bêche, B. Injection and waveguiding properties in SU8 nanotubes for sub-wavelength regime propagation and nanophotonics integration. Nanoscale 2014, 6, 5309–5314. [Google Scholar] [CrossRef] [PubMed]
- Leosson, K.; Agnarsson, B. Integrated biophotonics with CYTOP. Micromachines 2012, 3, 114–125. [Google Scholar] [CrossRef]
- Nishihara, H.; Haruna, M.; Suhara, T. Optical Integrated Circuits; MacGrow-Hill Publishing Co: New York, NY, USA, 1989; p. 43. [Google Scholar]
- Bêche, B.; Jouin, J.F.; Grossard, N.; Gaviot, E.; Toussaere, E.; Zyss, J. PC software for analysis of versatile integrated optical waveguides by polarised semi-vectorial finite difference method. Sens. Actuators A Phys. 2004, 114, 59–64. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huby, N.; Bigeon, J.; Danion, G.; Duvail, J.-L.; Gouttefangeas, F.; Joanny, L.; Bêche, B. Transferable Integrated Optical SU8 Devices: From Micronic Waveguides to 1D-Nanostructures. Micromachines 2015, 6, 544-553. https://doi.org/10.3390/mi6050544
Huby N, Bigeon J, Danion G, Duvail J-L, Gouttefangeas F, Joanny L, Bêche B. Transferable Integrated Optical SU8 Devices: From Micronic Waveguides to 1D-Nanostructures. Micromachines. 2015; 6(5):544-553. https://doi.org/10.3390/mi6050544
Chicago/Turabian StyleHuby, Nolwenn, John Bigeon, Gwennaël Danion, Jean-Luc Duvail, Françis Gouttefangeas, Loïc Joanny, and Bruno Bêche. 2015. "Transferable Integrated Optical SU8 Devices: From Micronic Waveguides to 1D-Nanostructures" Micromachines 6, no. 5: 544-553. https://doi.org/10.3390/mi6050544
APA StyleHuby, N., Bigeon, J., Danion, G., Duvail, J. -L., Gouttefangeas, F., Joanny, L., & Bêche, B. (2015). Transferable Integrated Optical SU8 Devices: From Micronic Waveguides to 1D-Nanostructures. Micromachines, 6(5), 544-553. https://doi.org/10.3390/mi6050544