Full Polymer Dielectric Elastomeric Actuators (DEA) Functionalised with Carbon Nanotubes and High-K Ceramics
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis of Single-Walled Carbon Nanotubes
2.3. Synthesis of Ferroelectric Perovskite PMN-PT
2.4. Design and Fabrication of the Elastomer Actuators
2.4.1. Design of the Elastomer Actuators
2.4.2. Modification of the Basic Raw Material
2.4.3. Fabrication of Single Dielectric and Electrode Layers
2.4.4. Fabrication of the Layer Composition of DEA
2.5. Analytical Methods
2.5.1. Rheology Properties of Dispersions
2.5.2. Electrical Properties of the Elastomer Films
2.5.3. Mechanical Properties of Films and Compounds
2.5.4. Actuator Properties
3. Results and Discussion
3.1. Fundamental Characterisation of the Basic Raw Polymer
3.2. Rheology of the Dispersions
3.3. Mechanical and Electrical Properties of the DEA
3.3.1. Electrode Layers
3.3.2. Dielectric Layers
3.3.3. Comparison of Full Polymer and Metallic Electrodes for DEAs
3.3.4. Three-Layer DEA
3.4. Actuator Properties
3.4.1. Influence of Material and Design Properties
3.4.2. Operation Parameters
3.4.3. Actuation Behaviour
4. Conclusions and Outlook
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Röntgen, W. Ueber die durch Electricität bewirkten Form-und Volumenänderungen von dielectrischen Körpern. Ann. Phys. Chem. 1880, 247, 771–786. [Google Scholar] [CrossRef]
- Pelrine, R.; Eckerle, J.; Chiba, S. Review of Artificial Muscle Approaches. In Proceedings of the International Symposium on Micro Machine and Human Science, Nagoya, Japan, 14–16 October 1992.
- Pelrine, R.; Kornbluh, R.; Joseph, J.; Chiba, S. Electrostriction of Polymer Films for Microactuators. In Proceedings of the Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya, Japan, 26–30 January 1997; pp. 238–243.
- Pelrine, R.; Kornbluh, R.; Joseph, J. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A 1998, 64, 77–85. [Google Scholar] [CrossRef]
- Kornbluh, R.; Pelrine, R.; Eckerle, J.; Joseph, J. Electrostrictive Polymer Artificial Muscle Actuators. In Proceedings of the International Conference on Robotics and Automation, Leuven, Belgium, 16–20 May 1998; pp. 2147–2154.
- Brochu, P.; Pei, Q. Advances in Dielectric Elastomers for Actuators and Artificial Muscles. Macromol. Rapid Commun. 2010, 31, 10–36. [Google Scholar] [CrossRef] [PubMed]
- Carpi, F. Electromechanically Active Polymers. Polym. Int. 2010, 59, 277–278. [Google Scholar] [CrossRef]
- Brochu, P.; Niu, X.; Pei, Q. Acrylic interpenetrating polymer network dielectric elastomers for energy harvesting. In Proceedings of the Conference Electroactive Polymer Actuators and Devices, San Diego, CA, USA, 9–10 March 2010.
- Pugal, D.; Jung, K.; Aabloo, A.; Kim, K.J. Ionic polymer–metal composite mechanoelectrical transduction: Review and perspectives. Polym. Int. 2010, 59, 279–289. [Google Scholar] [CrossRef]
- Carpi, F.; Kornbluh, R.; Sommer-Larsen, P.; Alici, G. Electroactive polymer actuators as artificial muscles: Are they ready for bioinspired applications? Bioinspir. Biomim. 2011, 6, 045006. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.; Keplinger, C. Dielectric-Elastomer Actuators Deliver Clean Energy; SPIE Newsroom: Bellingham, WA, USA, 2011. [Google Scholar]
- Grauer, M.; Denes, I.; Köllnberger, A.; Kovacs, G. EpoSil—Gaining Sea Power with EAP. In Proceedings of the International Conference on New Actuators, Bremen, Germany, 18–20 June 2012; pp. 391–393.
- Maiolino, P.; Galantini, F.; Mastrogiovanni, F.; Gallone, G.; Cannata, G.; Carpi, F. Soft dielectrics for capacitive sensing in robot skins: Performance of different elastomer types. Sens. Actuators A 2015, 226, 37–47. [Google Scholar] [CrossRef]
- Jiang, L.; Betts, A.; Kennedy, D.; Jerrams, S. Improving the electromechanical performance of dielectric elastomers using silicone rubber and dopamine coated barium titanate. Mater. Des. 2015, 85, 733–742. [Google Scholar] [CrossRef]
- Köckritz, T. Entwicklung Neuartiger Elektroaktiver Polymere auf Basis Vollpolymerer Monolithischer Schichtaufbauten. Ph.D. Thesis, TU Dresden, Dresden, Germany, February 2016. [Google Scholar]
- Benslimane, M.; Gravesen, P.; Sommer-Larsen, P. Mechanical properties of Dielectric Elastomer Actuators with smart metallic compliant electrodes. In Proceedings of the Conference on Electro-Active Polymer Actuators and Devices, San Diego, CA, USA, 17–19 March 2002; pp. 150–157.
- Bar-Cohen, Y. Electroactive polymer (EAP) Actuators as Artificial Muscles—Reality, Potential, and Challenges, 2nd ed.; SPIE Press: Bellingham, WA, USA, 2004. [Google Scholar]
- Benslimane, M.; Kiil, H.-E.; Tryson, M. Dielectric electro-active polymer push actuators: Performance and challenges. Polym. Int. 2010, 59, 415–421. [Google Scholar] [CrossRef]
- Li, B.; Chen, H.; Qiang, J.; Hu, S.; Zhu, Z.; Wang, Y. Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation. J. Phys. D Appl. Phys. 2011, 44, 155301. [Google Scholar] [CrossRef]
- Mößinger, H.; Haus, H.; Schlaak, H. New Electrical Interconnection Techniques for Dielectric Elastomer Stack Transducers with Improved Lifetime. In Proceedings of the International Conference on New Actuators, Bremen, Germany, 18–20 June 2012; pp. 383–386.
- Cakmak, E.; Fang, X.; Yildiz, O.; Bradford, P.D.; Ghosh, T.K. Carbon nanotube sheet electrodes for anisotropic actuation of dielectric elastomers. Carbon 2015, 89, 113–120. [Google Scholar] [CrossRef]
- Matysek, M.; Lotz, P.; Schlaak, H. Lifetime investigation of dielectric elastomer stack actuators. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 89–96. [Google Scholar] [CrossRef]
- Kiil, H.-E.; Benslimane, M. Scalable industrial manufacturing of DEAP. In Proceedings of the Conference on Electro-Active Polymer Actuators and Devices, San Diego, CA, USA, 9–10 March 2009.
- Rødgaard, M. Piezoelectric Transformer Based Power Converters; Design and Control. Ph.D. Thesis, Technical University of Denmark, Lyngby, Denmark, September 2012. [Google Scholar]
- Jost, O. Actuator Element and Use Thereof. Patent WO 2010020242 A3, 15 April 2010. [Google Scholar]
- Dow Corning. Silicone Elastomer; Sylgard 184; Dow Corning: Midland, MI, USA, 2014. [Google Scholar]
- Roch, A.; Jost, O.; Schultrich, B.; Beyer, E. High-yield synthesis of single-walled carbon nanotubes with a pulsed arc-discharge technique. Phys. Stat. Solidi B 2007, 244, 3907–3910. [Google Scholar] [CrossRef]
- Roch, A.; Märcz, M.; Richter, U.; Leson, A.; Beyer, E.; Jost, O. Multi-component catalysts for the synthesis of SWCNT. Phys. Stat. Solidi B 2009, 246, 2511–2513. [Google Scholar] [CrossRef]
- Roch, A.; Roch, T.; Talens, E.; Kaiser, B.; Lasagni, A.; Beyer, E.; Jost, O.; Cuniberti, G.; Leson, A. Selective laser treatment and laser patterning of metallic and semiconducting nanotubes in single walled carbon nanotube films. Diam. Relat. Mater. 2014, 45, 70–75. [Google Scholar] [CrossRef]
- Gupta, S.; Bedekar, P.; Kulkarni, A. Synthesis, dielectric and microstructure studies of lead magnesium niobate stabilised using lead titanate. Ferroelectrics 1996, 189, 17–25. [Google Scholar] [CrossRef]
- Schönecker, A.; Gebhardt, S. Oxide Targets for Integrated Thin Films. 2012. Available online: http://www.ikts.fraunhofer.de/en/communication/publications/annual_reports.html (accessed on 29 July 2016).
- Tichy, J.; Erhart, J.; Kittinger, E.; Prívratská, J. Fundamentals of Piezoelectric Sensorics—Mechanical, Dielectric, and Thermodynamical Properties of Piezoelectric Materials; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Köckritz, T.; Jansen, I. Modification of polydimethylsiloxane based on the integration of carbon allotropes to achieve outstanding material properties for novel fields of application. Int. J. Adhes. Adhes. 2016. submitted. [Google Scholar]
- Köckritz, T.; Wehnert, F.; Pap, J.-S.; Jansen, I. Increasing the Electrical Values of Polydimethylsiloxane by the Integration of Carbon Black and Carbon Nanotubes: A Comparison of the Effect of Different Nanoscale Fillers. J. Alloy. Compd. 2015, 51, 221–222. [Google Scholar]
- Köckritz, T.; Wehnert, F.; Pap, J.-S.; Jansen, I. Comparison of different nanoscale fillers for electrical modification of silicone. In Proceedings of the International Nanotechnology Symposium, Dresden, Germany, 1–3 July 2014.
- Köckritz, T.; Wehnert, F.; Pap, J.-S.; Jansen, I. Comparison of different nanoscale fillers according to their ability to change electrical and rheological values of adhesives. In Proceedings of the World Congress on Adhesion and Related Phenomena, Nara, Japan, 7–11 September 2014.
- Pötschke, P.; Fornes, T.; Paul, D. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 2002, 43, 3247–3255. [Google Scholar] [CrossRef]
- Utracki, L. Flow and flow orientation of composites containing anisometric particles. Polym. Compos. 1986, 7, 274–282. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung. Electric Strength of Insulating Materials—Test Methods; DIN EN 60243-2; Beuth Verlag: Berlin, Germany, 2014. [Google Scholar]
- The American Society for Testing Materials. Standard Test Methods for D-C Resistance or Conductance of Insulating Materials; ASTM D 257-99; ASTM International: West Conshohocken, PA, USA, 1998. [Google Scholar]
- Lisowski, M.; Kacprzyk, R. Changes proposed for the IEC 60093 Standard concerning measurements of the volume and surface resistivities of electrical insulating materials. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 139–145. [Google Scholar] [CrossRef]
- Keithley Instruments. Model 6517B Electrometer—User’s Manual. 2010. Available online: http://www.tequipment.net/Keithley6517B.html?search=true (accessed on 23 March 2014).
- Keithley Instruments. Model 8009 Resistivity Test Fixture—Instruction Manual. 2010. Available online: http://www.tequipment.net/Keithley8009.html?search=true (accessed on 23 March 2014).
- Deutsches Institut für Normung. Plastics—Measurement of Resistivity of Conductive Plastics; DIN EN ISO 3915; Beuth Verlag: Berlin, Germany, 1999. [Google Scholar]
- Smits, F. Measurement of sheet resistivities with the four-point probe. Bell Labs Tech. J. 1958, 37, 711–718. [Google Scholar] [CrossRef]
- The American Society for Testing Materials. Standard Test Method for D-C Resistance or Conductance of Moderately Conductive Materials; ASTM D 4496-87; ASTM International: West Conshohocken, PA, USA, 1998. [Google Scholar]
- Keithley Instruments. Multimeter 2000—User Manual. 2013. Available online: http://www.tequipment.net/Keithley2000-20.html?search=true#tab-documents (accessed on 27 November 2013).
- Deutsches Institut für Normung. Plastics-Determination of Tensile Properties; DIN EN ISO 527-1; Beuth Verlag: Berlin, Germany, 2012. [Google Scholar]
- Deutsches Institut für Normung. Plastics-Determination of Tensile Properties; DIN EN ISO 527-3; Beuth Verlag: Berlin, Germany, 2003. [Google Scholar]
- American Society for Testing Materials. Standard Test Method for Tensile Properties of Plastics; ASTM D 638-14; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Deutsches Institut für Normung. Adhesives-T-Peel Test for Flexible-to-Flexible Bonded Assemblies; DIN EN ISO 11339; Beuth Verlag: Berlin, Germany, 2010. [Google Scholar]
- American Society for Testing Materials. Standard Test Method for Peel Resistance of Adhesives (T-Peel Test); ASTM D 1876-01; ASTM International: West Conshohocken, PA, USA, 2001. [Google Scholar]
- Wissler, M.; Mazza, E. Modeling of a pre-strained circular actuator made of dielectric elastomers. Sens. Actuators A 2005, 120, 184–192. [Google Scholar] [CrossRef]
- Zygo Corp. ZMI 7702 Laser Head—Technical Datasheet. 2009. Available online: http://www.zygo.com/?/met/markets/stageposition/zmi/laserheads/ (accessed on 11 May 2015).
- Hameg Instruments. Hameg HM8142—Power Supplies. 2014. Available online: http://www.helmut-singer.de/stock/-1672028357.html (accessed on 4 September 2015).
- Trek Inc. Trek Model 609B-3—High-Voltage Power Amplifier. 2013. Available online: http://www.trekinc.com/products/609B-3.asp (accessed on 4 September 2015).
- Kofod, G.; Sommer-Larsen, P. Silicone dielectric elastomer actuators: Finite-elasticity model of actuation. Sens. Actuators A 2005, 122, 273–283. [Google Scholar] [CrossRef]
- Lotz, P. Dielektrische Elastomerstapelaktoren für ein Peristaltisches Fluidfördersystem. Ph.D. Thesis, Technischen Universität Darmstadt, Darmstadt, Germany, November 2009. [Google Scholar]
- Lotz, P.; Matysek, M.; Schlaak, H. Fabrication and application of miniaturized dielectric elastomer stack actuators. IEEE/ASME Trans. Mechatron. 2011, 16, 58–66. [Google Scholar] [CrossRef]
- Min, C.; Shen, X.; Shi, Z.; Chen, L.; Xu, Z. The electrical properties and conducting mechanisms of carbon nanotube/polymer nanocomposites: A review. Polym. Plast. Technol. Eng. 2010, 49, 1172–1181. [Google Scholar] [CrossRef]
- Aguilar, J. Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films. Express Polym. Lett. 2010, 4, 292–299. [Google Scholar] [CrossRef]
- Mullins, L. Softening of Rubber by Deformation. Rubber Chem. Technol. 1969, 42, 339–362. [Google Scholar] [CrossRef]
- Risse, S.; Kussmaul, B.; Krüger, H.; Waché, R.; Kofod, G. DEA material enhancement with dipole grafted PDMS networks. In Proceedings of the Conference on Electroactive Polymer Actuators Devices, San Diego, CA, USA, 8–9 March 2011.
- Diaz, R.; Diani, J.; Gilormini, P. Physical interpretation of the Mullins softening in a carbon-black filled SBR. Polymer 2014, 55, 4942–4947. [Google Scholar] [CrossRef]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köckritz, T.; Luther, R.; Paschew, G.; Jansen, I.; Richter, A.; Jost, O.; Schönecker, A.; Beyer, E. Full Polymer Dielectric Elastomeric Actuators (DEA) Functionalised with Carbon Nanotubes and High-K Ceramics. Micromachines 2016, 7, 172. https://doi.org/10.3390/mi7100172
Köckritz T, Luther R, Paschew G, Jansen I, Richter A, Jost O, Schönecker A, Beyer E. Full Polymer Dielectric Elastomeric Actuators (DEA) Functionalised with Carbon Nanotubes and High-K Ceramics. Micromachines. 2016; 7(10):172. https://doi.org/10.3390/mi7100172
Chicago/Turabian StyleKöckritz, Tilo, René Luther, Georgi Paschew, Irene Jansen, Andreas Richter, Oliver Jost, Andreas Schönecker, and Eckhard Beyer. 2016. "Full Polymer Dielectric Elastomeric Actuators (DEA) Functionalised with Carbon Nanotubes and High-K Ceramics" Micromachines 7, no. 10: 172. https://doi.org/10.3390/mi7100172
APA StyleKöckritz, T., Luther, R., Paschew, G., Jansen, I., Richter, A., Jost, O., Schönecker, A., & Beyer, E. (2016). Full Polymer Dielectric Elastomeric Actuators (DEA) Functionalised with Carbon Nanotubes and High-K Ceramics. Micromachines, 7(10), 172. https://doi.org/10.3390/mi7100172