Micromachines Beyond Silicon-Based Technologies: A Letter from the New Editor-in-Chief
References
- Special Issue “Biomedical Microdevices”. Available online: https://www.mdpi.com/journal/micromachines/special_issues/biomedical_microdevices (accessed on 8 March 2016).
- Haller, A.; Spittler, A.; Brandhoff, L.; Zirath, H.; Puchberger-Enengl, D.; Keplinger, F.; Vellekoop, M.J. Microfluidic Vortex Enhancement for On-Chip Sample Preparation. Micromachines 2015, 6, 239–251. [Google Scholar] [CrossRef]
- Chiou, C.-H.; Yeh, T.-Y.; Lin, J.-L. Deformation Analysis of a Pneumatically-Activated Polydimethylsiloxane (PDMS) Membrane and Potential Micro-Pump Applications. Micromachines 2015, 6, 216–229. [Google Scholar] [CrossRef]
- Zhou, Y.; Amirouche, F. An Electromagnetically-Actuated All-PDMS Valveless Micropump for Drug Delivery. Micromachines 2011, 2, 345–355. [Google Scholar] [CrossRef]
- Rivera, A.L.; Baskaran, H. The Effect of Biomolecular Gradients on Mesenchymal Stem Cell Chondrogenesis under Shear Stress. Micromachines 2015, 6, 330–346. [Google Scholar] [CrossRef]
- Zhao, F.; Kreutzer, J.; Pajunen, S.; Kallio, P. Mechanical Analysis of a Pneumatically Actuated Concentric Double-Shell Structure for Cell Stretching. Micromachines 2014, 5, 868–885. [Google Scholar] [CrossRef]
- Hou, H.W.; Bhagat, A.A.S.; Lee, W.C.; Huang, S.; Han, J.; Lim, C.T. Microfluidic Devices for Blood Fractionation. Micromachines 2011, 2, 319–343. [Google Scholar] [CrossRef]
- Chang, C.-L.; Shie, J.-L. Design and Implementation of a Bionic Mimosa Robot with Delicate Leaf Swing Behavior. Micromachines 2015, 6, 42–62. [Google Scholar] [CrossRef]
- Aboelkassem, Y. Insect-Inspired Micropump: Flow in a Tube with Local Contractions. Micromachines 2015, 6, 1143–1156. [Google Scholar] [CrossRef]
- Yang, J.; Si, C.; Han, G.; Zhang, M.; Ma, L.; Zhao, Y.; Ning, J. Researching the Aluminum Nitride Etching Process for Application in MEMS Resonators. Micromachines 2015, 6, 281–290. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, J.; Si, C.; Han, G.; Zhao, Y.; Ning, J. Research on the Piezoelectric Properties of AlN Thin Films for MEMS Applications. Micromachines 2015, 6, 1236–1248. [Google Scholar] [CrossRef]
- González, I.; Tijero, M.; Martin, A.; Acosta, V.; Berganzo, J.; Castillejo, A.; Bouali, M.M.; Soto, J.L. Optimizing Polymer Lab-on-Chip Platforms for Ultrasonic Manipulation: Influence of the Substrate. Micromachines 2015, 6, 574–591. [Google Scholar] [CrossRef]
- Han, X.; Liu, X.; Tian, L. Mathematical Modelling and Simulation Research of Thermal Engraving Technology Based on PMMA Material. Micromachines 2016, 7, 37. [Google Scholar] [CrossRef]
© 2016 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, N.-T. Micromachines Beyond Silicon-Based Technologies: A Letter from the New Editor-in-Chief. Micromachines 2016, 7, 44. https://doi.org/10.3390/mi7030044
Nguyen N-T. Micromachines Beyond Silicon-Based Technologies: A Letter from the New Editor-in-Chief. Micromachines. 2016; 7(3):44. https://doi.org/10.3390/mi7030044
Chicago/Turabian StyleNguyen, Nam-Trung. 2016. "Micromachines Beyond Silicon-Based Technologies: A Letter from the New Editor-in-Chief" Micromachines 7, no. 3: 44. https://doi.org/10.3390/mi7030044
APA StyleNguyen, N. -T. (2016). Micromachines Beyond Silicon-Based Technologies: A Letter from the New Editor-in-Chief. Micromachines, 7(3), 44. https://doi.org/10.3390/mi7030044