Development of a Multi-Stage Electroosmotic Flow Pump Using Liquid Metal Electrodes †
Abstract
:1. Introduction
2. Liquid Metal-Based Electroosmotic Flow (EOF) Pump
3. Experimental Details
3.1. Chip Fabrication
3.2. Measurement of Pumping Performance
4. Results and Discussion
4.1. Pumping Velocity
4.2. Electric Current and Power Consumption
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Saini, R.; Kenny, M.; Barz, D.P.J. Electroosmotic flow through packed beds of granular materials. Microfluid. Nanofluid. 2015, 19, 693–708. [Google Scholar] [CrossRef]
- Zhu, X.L. Manipulation of self-assembled microparticle chains by electroosmotic flow assisted electrorotation in an optoelectronic device. Micromachines 2015, 6, 1387–1405. [Google Scholar] [CrossRef]
- Glawdel, T.; Elbuken, C.; Lee, L.E.J.; Ren, C.L. Microfluidic system with integrated electroosmotic pumps, concentration gradient generator and fish cell line (RTgill-W1)—Towards water toxicity testing. Lab Chip 2009, 9, 3243–3250. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Huang, W.C.; Hu, C.C. An ultrasensitive label-free electrochemical impedimetric DNA biosensing chip integrated with a DC-biased AC electroosmotic vortex. Sens. Actuators A Phys. 2015, 209, 61–68. [Google Scholar] [CrossRef]
- Zhu, Z.; Lu, J.J.; Almeida, M.I.G.S.; Pu, Q.; Kolev, S.D.; Liu, S. A microfabricated electroosmotic pump coupled to a gas-diffusion microchip for flow injection analysis of ammonia. Microchim. Acta 2015, 182, 1063–1070. [Google Scholar] [CrossRef]
- Ryan, W.; Louise, M.M.; Kirsty, J.S. Combining electro-osmotic flow and FTA® paper for DNA analysis on microfluidic devices. Micromachines 2016, 7, 119. [Google Scholar]
- Berrouche, Y.; Avenas, Y.; Schaeffer, C.; Chang, H.C.; Wang, P. Design of a porous electroosmotic pump used in power electronic cooling. IEEE Trans. Ind. Appl. 2009, 45, 2073–2079. [Google Scholar] [CrossRef]
- Berrouche, Y.; Avenas, Y. Power electronics cooling of 100 W/cm2 using AC electroosmotic pump. IEEE Trans. Power Electron. 2014, 29, 449–454. [Google Scholar] [CrossRef]
- Song, Y.X.; Zhao, K.; Wang, J.S.; Wu, X.D.; Pan, X.X.; Sun, Y.Q.; Li, D.Q. An induced current method for measuring zeta potential of electrolyte solution–air interface. J. Colloid Interface Sci. 2014, 416, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Yosuke, K.; Reiko, K.; Yohei, S.; Koichi, H.; Norihisa, M. Effects of micromachining processes on electro-osmotic flow mobility of glass surfaces. Micromachines 2013, 4, 67–79. [Google Scholar]
- Seung, J.L.; Tae-Joon, J.; Sun, M.K.; Daejoong, K. Quantification of vortex generation due to non-equilibrium electrokinetics at the micro/nanochannel interface: Spectral analysis. Micromachines 2016, 7, 109. [Google Scholar]
- Gui, L.; Ren, C.L. Numeric simulation of heat transfer and electrokinetic flow in an electroosmosis-based continuous flow PCR chip. Anal. Chem. 2006, 78, 6215–6222. [Google Scholar] [CrossRef] [PubMed]
- Xuan, X.; Xu, B.; Sinton, D.; Li, D.Q. Electroosmotic flow with Joule heating effects. Lab Chip 2004, 4, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Wereley, S.T. Rapid generation and manipulation of microfluidic vortex flows induced by AC electrokinetics with optical illumination. Lab Chip 2013, 13, 1289–1294. [Google Scholar] [CrossRef] [PubMed]
- Takamura, Y.; Onoda, H.; Inokuchi, H.; Adachi, S.O.A.; Horiike, Y. Low-voltage electroosmosis pump for stand-alone microfluidics devices. Electrophoresis 2003, 24, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Glawdel, T.; Ren, C.L. Electro-osmotic flow control for living cell analysis in microfluidic PDMS chips. Mech. Res. Commun. 2009, 36, 75–81. [Google Scholar] [CrossRef]
- Gu, C.Y.; Jia, Z.J.; Zhu, Z.F.; He, C.Y.; Wang, W.; Morgan, A.; Lu, J.J.; Liu, S.R. Miniaturized electroosmotic pump capable of generating pressures of more than 1200 bar. Anal. Chem. 2012, 84, 9609–9614. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Gu, C.; Lynch, K.B.; Lu, J.J.; Zhang, Z.; Pu, Q.; Liu, S.R. High-pressure open-channel on-chip electroosmotic pump for nanoflow high performance liquid chromatography. Anal. Chem. 2014, 86, 1958–1964. [Google Scholar] [CrossRef] [PubMed]
- Shin, W.; Zhu, E.; Nagarale, R.K.; Kim, C.H.; Lee, J.M.; Shin, S.J.; Heller, A. Nafion-coating of the electrodes improves the flow-stability of the Ag/SiO2/Ag2O electroosmotic pump. Anal. Chem. 2011, 83, 5023–5025. [Google Scholar] [CrossRef] [PubMed]
- Nagarale, R.K.; Heller, A.; Shin, W. A stable Ag/ceramic-membrane/Ag2O electroosmotic pump built with a mesoporous phosphosilicate-on-silica frit membrane. J. Electrochem. Soc. 2012, 159, P14–P17. [Google Scholar] [CrossRef]
- Shin, W.; Lee, J.M.; Nagarale, R.K.; Shin, S.J.; Heller, A. A miniature, nongassing electroosmotic pump operating at 0.5 V. J. Am. Chem. Soc. 2011, 133, 2374–2377. [Google Scholar] [CrossRef] [PubMed]
- Lakhotiya, H.; Mondal, K.; Nagarale, R.K.; Sharma, A. Low voltage non-gassing electro-osmotic pump with zeta potential tuned aluminosilicate frits and organic dye electrodes. RSC Adv. 2014, 4, 28814–28821. [Google Scholar] [CrossRef]
- Kumar, R.; Jahan, K.; Nagarale, R.K.; Sharma, A. Nongassing long-lasting electro-osmotic pump with polyaniline wrapped aminated graphene electrodes. ACS Appl. Mater. Interfaces 2015, 7, 593–601. [Google Scholar] [CrossRef] [PubMed]
- So, J.H.; Dickey, M.D. Inherently aligned microfluidic electrodes composed of liquid metal. Lab Chip 2011, 11, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Gui, L. Development of a fast thermal response microfluidic system using liquid metal. J. Micromech. Microeng. 2016, 26, 075005. [Google Scholar] [CrossRef]
- Cheng, S.; Wu, Z. Microfluidic electronics. Lab Chip 2012, 12, 2782–2791. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Gui, L. A handy liquid metal based electroosmotic flow pump. Lab Chip 2014, 14, 1866–1872. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Whitesides, G.M. Soft Lithography. Angew. Chem. Int. Edit. 1998, 37, 550–575. [Google Scholar] [CrossRef]
- Ren, X.Q.; Bachman, M.C.; Lia, G.P.; Allbritton, N. Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane). J. Chromatogr. B Biomed. Sci. Appl. 2001, 762, 117–125. [Google Scholar] [CrossRef]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.; Gui, L. Development of a Multi-Stage Electroosmotic Flow Pump Using Liquid Metal Electrodes. Micromachines 2016, 7, 165. https://doi.org/10.3390/mi7090165
Gao M, Gui L. Development of a Multi-Stage Electroosmotic Flow Pump Using Liquid Metal Electrodes. Micromachines. 2016; 7(9):165. https://doi.org/10.3390/mi7090165
Chicago/Turabian StyleGao, Meng, and Lin Gui. 2016. "Development of a Multi-Stage Electroosmotic Flow Pump Using Liquid Metal Electrodes" Micromachines 7, no. 9: 165. https://doi.org/10.3390/mi7090165
APA StyleGao, M., & Gui, L. (2016). Development of a Multi-Stage Electroosmotic Flow Pump Using Liquid Metal Electrodes. Micromachines, 7(9), 165. https://doi.org/10.3390/mi7090165