Plasma Polymerization of SnOxCy Organic-Like Films and Grafted PNIPAAm Composite Hydrogel with Nanogold Particles for Promotion of Thermal Resistive Properties
Abstract
:1. Introduction
2. Experimental Details
2.1. Preparation of Circular Electrode and Glass
2.2. Plasma Pre-Treatment
2.3. Post Treatment by Photo UV-Induced Grafting Polymerization
2.4. Characterization
2.4.1. Surface Contact Angles
2.4.2. Morphology
2.4.3. UV-VIS Spectra
2.4.4. Resistance Measurement
3. Results and Discussion
3.1. Resistance and Surface Contact Angles
3.2. Environmental Test
3.3. Scanning Electron Microscope (SEM) Morphology
3.4. UV-Vis Spectra
3.5. Response and Recovery Test
4. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xu, F.J.; Kang, E.T.; Neoh, K.G. pH- and temperature-responsive hydrogels from crosslinked triblock copolymers prepared via consecutive atom transfer radical polymerizations. Biomaterials 2006, 27, 2787–2797. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.H. Oxadiazole-containing conjugated polymers for light-emitting diodes. Adv. Mater. 1998, 9, 680–684. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, Z.; Yang, X.; Chen, X.; Song, Y. Temperature-sensitive porous membrane production through radiation co-grafting of NIPAAm on/in PVDF porous membrane. Radiat. Phys. Chem. 2007, 76, 707–713. [Google Scholar] [CrossRef]
- Dunne, A.; Delaney, C.; Florea, L.; Diamond, D. Solvato-morphologically controlled, reversible NIPAAm hydrogel photoactuators. RSC Adv. 2016, 6, 83296–83302. [Google Scholar] [CrossRef]
- Kim, S.; Healy, K.E. Hydrogels composed of N-isopropylacrylamide (NIPAAm) and acrylic acid. Biomacromolecules 2003, 5, 1214–1223. [Google Scholar] [CrossRef] [PubMed]
- Minghong, W.; Bao, B.; Chen, J.; Xu, Y.; Zhou, S.; Ma, Z.T. Preparation of thermosensitive hydrogel (PP-g-NIPAAm) with one–off switching for controlled release of drugs. Radiat. Phys. Chem. 1999, 56, 341–346. [Google Scholar] [CrossRef]
- Liu, B.; Hu, Y. The Application of Temperature-Sensitive Hydrogels to Textiles: A Review of Chinese and Japanese Investigations. Fibers Text. East. Eur. 2005, 6, 45–49. [Google Scholar]
- Yoo, M.K.; Sung, Y.K.; Lee, Y.M.; Cho, C.S. Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel. Polymer 2000, 41, 5713–5719. [Google Scholar] [CrossRef]
- Chung, Y.; Jung, M.J.; Lee, M.W.; Han, J.G. Surface modification effects on film growth with atmospheric Ar/Ar+O2 plasma. Surf. Coat. Technol. 2003, 174, 1038–1042. [Google Scholar] [CrossRef]
- Krivetsky, V.; Ponzoni, A.; Comini, E.; Rumyantseva, M.; Gaskov, A. Selective modified SnO2-based materials for gas sensors arrays. Chemistry 2009, 1, 204–207. [Google Scholar] [CrossRef]
- Remes, Z.; Vanecek, M.; Yates, H.M.; Evans, P.; Sheel, D.W. Optical properties of SnO2: F films deposited by atmospheric pressure CVD. Thin Solid Films 2009, 23, 6287–6289. [Google Scholar] [CrossRef]
- de Graaf, A.; van Deelen, J.; Poodt, P.; van Mol, T.; Spee, K.; Grob, F.; Kuypers, A. Development of atmospheric pressure CVD processes for highquality transparent conductive oxides. Energy Procedia 2010, 2, 41–48. [Google Scholar] [CrossRef]
- Janča, J.; Sodomka, L. Plasma-polymerised organosiloxane thin films as selective gas sensors. Surf. Coat. Technol. 1998, 98, 851–854. [Google Scholar] [CrossRef]
- Sharma, A.; Tomar, M.; Gupta, V. SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures. Sens. Actuators B 2011, 156, 743–752. [Google Scholar] [CrossRef]
- Huang, H.; Lee, Y.C.; Chow, C.L.; Tan, O.K.; Tse, M.S.; Guo, J.; White, T. Plasma treatment of SnO2 nanocolumn arrays deposited by liquid injection plasma-enhanced chemical vapor deposition for gas sensors. Sens. Actuators B 2009, 138, 201–206. [Google Scholar] [CrossRef]
- Chou, C.Y.; Chen, K.S.; Lin, W.L.; Ye, Y.C.; Liao, S.C. Plasma polymerization SnOxCy organic-like films and grafted PNIPAAm composite hydrogel with nanogold particles for promotion thermal resistive properties. Sensors 2011, 11, 7127–7140. [Google Scholar]
- Wessling, B. Conductive Polymers as Organic Nanometals. In Handbook of Nanostructured Materials and Nanotechnology; Nalwa, H.S., Ed.; Academic Press: New York, NY, USA, 2000; Volume 5, pp. 501–575. [Google Scholar]
- Mulvaney, P. The Beauty and Elegance of Nanocrystals; University of Melbourne: Parkville, Australia, 2003. [Google Scholar]
- Chen, K.S.; Wu, H.M.; Lin, H.R.; Liao, S.C.; Hung, T.C.; Lin, H.C.; Chia, T.Y. Novel stable humidity layers prepared by surface graft polymerization of anionic monomers mixing with phenol-formaldehyde. Biomed. Eng. Appl. Basis Commun. 2009, 21, 371–374. [Google Scholar] [CrossRef]
- Chen, K.S.; Li, M.S.; Wu, H.M.; Yang, M.R.; Tian, J.Y.; Huang, F.Y.; Hung, H.Y. Surface organic modification of inorganic substrates by plasma deposition of tin oxide organic-like thin films and grafting polymerization. Surf. Coat. Technol. 2006, 200, 3270–3277. [Google Scholar] [CrossRef]
- Kny, E.; Levenson, L.L.; James, W.J.; Auerbach, R.A. Formation and properties of metallic organotin films. Thin Solid Films 1981, 85, 23. [Google Scholar] [CrossRef]
- Chen, K.-S.; Hung, T.-S.; Wu, H.-M.; Wu, J.-Y.; Lin, M.-T.; Feng, C.-K. Preparation of thermosensitive gold nanoparticles by plasma pretreatment and UV grafted polymerization. Thin Solid Films 2010, 518, 7557–7562. [Google Scholar] [CrossRef]
- Liao, S.-C.; Wu, H.-M.; Tsao, Y.-C.; Lin, H.-R.; Chen, K.-S.; Chen, W.-Y. Post treatment of plasma-polymerized SnOx organic-like films with poly ethylene glycol for improving CO gas sensitivity. J. Nanosci. Nanotechnol. 2012, 12, 1280–1283. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.-S.; Liao, S.-C.; Lin, S.-W.; Hung, T.-S.; Tsao, S.-H.; Wu, H.-M.; Inagaki, N.; Chen, W.-Y. Improvement of thermoplastic polyurethane nonwoven hydrophilicity by atmospheric pressure plasma treatment with He and N2 mixed gases. Jpn. J. Appl. Phys. 2012, 51, 01AJ06. [Google Scholar] [CrossRef]
Different Treatment | AuNPs Solution | Treatment A | Treatment B | Treatment C | Treatment D | Treatment E |
---|---|---|---|---|---|---|
Resistance (KΩ) | 11.9 ± 2.3 | 20.8 ± 2.2 | 130 ± 5.5 | 59.2 ± 3.4 | 61.5 ± 4.9 | 60.6 ± 2.9 |
Different Treatment | Untreated | Treatment A | Treatment B | Treatment C | Treatment D | Treatment E |
---|---|---|---|---|---|---|
θH2O | 40.1° | <10° | 41.0° | 31.5° | 43.2° | 43.1° |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chou, C.-Y.; Chen, K.-S.; Lin, W.-L.; Ye, Y.-C.; Liao, S.-C. Plasma Polymerization of SnOxCy Organic-Like Films and Grafted PNIPAAm Composite Hydrogel with Nanogold Particles for Promotion of Thermal Resistive Properties. Micromachines 2017, 8, 5. https://doi.org/10.3390/mi8010005
Chou C-Y, Chen K-S, Lin W-L, Ye Y-C, Liao S-C. Plasma Polymerization of SnOxCy Organic-Like Films and Grafted PNIPAAm Composite Hydrogel with Nanogold Particles for Promotion of Thermal Resistive Properties. Micromachines. 2017; 8(1):5. https://doi.org/10.3390/mi8010005
Chicago/Turabian StyleChou, Chin-Yen, Ko-Shao Chen, Win-Li Lin, Ying-Cian Ye, and Shu-Chuan Liao. 2017. "Plasma Polymerization of SnOxCy Organic-Like Films and Grafted PNIPAAm Composite Hydrogel with Nanogold Particles for Promotion of Thermal Resistive Properties" Micromachines 8, no. 1: 5. https://doi.org/10.3390/mi8010005
APA StyleChou, C. -Y., Chen, K. -S., Lin, W. -L., Ye, Y. -C., & Liao, S. -C. (2017). Plasma Polymerization of SnOxCy Organic-Like Films and Grafted PNIPAAm Composite Hydrogel with Nanogold Particles for Promotion of Thermal Resistive Properties. Micromachines, 8(1), 5. https://doi.org/10.3390/mi8010005