Biomedical Applications of Nanotechnology and Nanomaterials
Author Contributions
Conflicts of Interest
References
- Etheridge, M.L.; Campbell, S.A.; Erdman, A.G.; Haynes, C.L.; Wolf, S.M.; McCullough, J. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine 2013, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Roco, M.C. National Nanotechnology Initiative: Past, Present, Future. In Handbook on Nanoscience, Engineering and Technology, 2nd ed.; Goddard, W.A., Brenner, D.W., Lyshevski, S.E., Iafrate, G., Eds.; Taylor and Francis: Milton Park, UK, 2007; p. 26. [Google Scholar]
- Kaushik, A.; Dixit, C. (Eds.) Nanobiotechnology for Sensing Applications: From Lab to Field; Apple Academic Press: Oakville, ON, Canada; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2016. [Google Scholar]
- Bhardwaj, V.; Srinivasan, S.; McGoron, A.J. Efficient Intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing. Analyst 2015, 140, 3929–3934. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Tiwari, S.; Jayant, R.D.; Vashist, A.; Nikkhah-Moshaie, R.; El-Hage, N.; Nair, M. Electrochemical biosensors for early stage Zika diagnostics. Trends Biotechnol. 2017, 35, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Tiwari, S.; Jayant, R.D.; Marty, A.; Nair, M. Towards detection and diagnosis of Ebola virus disease at point-of-care. Biosens. Bioelectron. 2016, 75, 254–272. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Jayant, R.D.; Tiwari, S.; Vashist, A.; Nair, M. Nano-biosensors to detect beta-amyloid for Alzheimer’s disease management. Biosens. Bioelectron. 2016, 80, 273–287. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, S.; Bhardwaj, V.; Nagasetti, A.; Fernandez-Fernandez, A.; McGoron, A.J. Multifunctional surface-enhanced raman spectroscopy-detectable silver nanoparticles for combined photodynamic therapy and pH-triggered chemotherapy. J. Biomed. Nanotechnol. 2016, 12, 2202–2219. [Google Scholar] [CrossRef]
- He, L.; Zhang, Y.; Ma, G.; Tan, P.; Li, Z.; Zang, S.; Wu, X.; Jing, J.; Fang, S.; Zhou, L.; et al. Near-infrared photoactivable control of Ca2+ signalling and optogenetic immunomodulation. Elife 2015, 4, e10024. [Google Scholar] [CrossRef] [PubMed]
- Peran, M.; Garcia, M.A.; Lopez-Ruiz, E.; Bustamante, M.; Jimenez, G.; Madeddu, R.; Marchal, J.A. Functionalized nanostructures with application in regenerative medicine. Int. J. Mol. Sci. 2012, 13, 3847–3886. [Google Scholar] [CrossRef] [PubMed]
- Demirdirek, B.; Faig, J.J.; Guliyev, R.; Uhrich, K.E. Polymerized Drugs—A Novel Approach to Controlled Release Systems, in Book Polymers for Biomedicine: Synthesis, Characterization, and Applications; Scholz, C., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 355–390. [Google Scholar]
- Melendez, R.; Harris, C.L.; Rivera, R.; Yu, L.; Uhrich, K.E. PolyMorphine: An innovative polymer drug for extended pain relief. J. Control. Release 2012, 162, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Faig, A.; Abdelhamid, D.; Uhrich, K.E. Sugar-based amphiphilic polymers for biomedical applications: From nanocarrier to therapeutic. Acc. Chem. Res. 2014, 10, 2867–2877. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.R.; Peterson, L.K.; York, A.W.; Ahuja, S.; Chae, H.; Joseph, L.B.; Rahimi, S.; Uhrich, K.E.; Haser, P.B.; Moghe, P.V. Nanotherapeutics for inhibition of atherogenesis and modulation of inflammation in artherosclerotic plaques. Cardiovasc. Res. 2016, 109, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Bennett, N.; Chmielowski, R.; Abdelhamid, D.S.; Faig, J.J.; Francis, N.; Baum, J.; Pang, Z.P.; Uhrich, K.E.; Moghe, P.V. Polymer brain-nanotherapeutics for multipronged inhibition of microglial α-synuclein aggregation, activation, and neurotoxicity. Biomaterials 2016, 111, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 260–2663. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Bajorek, J.; Jayade, S.; Mirza, J.; Rogado, S.; Sundararajan, A.; Faig, J.; Ferrage, L.; Uhrich, K.E. Salicylic acid (SA)-eluting bone regeneration scaffolds with interconnected porosity and local and sustained SA release. J. Biomed. Mater. Res. Part A 2017, 105, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Prudencio, A.; Stebbins, N.D.; Johnson, M.; Song, M.J.; Langowski, B.A.; Uhrich, K.E. Polymeric prodrugs of ampicillin as antibacterial coatings. J. Bioact. Compat. Polym. 2014, 29, 208–220. [Google Scholar] [CrossRef]
- Kircher, M.F.; Zerda, A.; Jokerst, J.V.; Zavaleta, C.L.; Kempen, P.J.; Mittra, E.; Pitter, K.; Huang, R.; Campos, C.; Habte, F.; et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle. Nat. Med. 2012, 18, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Y.; Zhang, H.J.; Yu, J.B.; Wang, C.; Sun, L.N.; Shi, W.D. Bifuntional magnetic-optical nanocomposites: Grafting lanthanide complex onto core-shell magnetic silica nanoarchitecture. Langmuir 2007, 23, 7836–7840. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Jayant, R.D.; Nikkhah-Moshaie, R.; Bhardwaj, V.; Roy, U.; Huang, Z.; Ruiz, A.; Yndart, A.; Atluri, V.; El-Hage, N.; et al. Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Sci. Rep. 2016, 6, 25309. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Jayant, R.D.; Sagar, V.; Nair, M. The potential of magneto-electric nanocarriers for drug delivery. Expert Opin. Drug Deliv. 2014, 11, 1635–1646. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Nikkhah-Moshaie, R.; Bhardwaj, V.; Sinha, R.; Alturi, V.; Jayant, R.D.; Yndart, A.; Kateb, B.; Pala, N.; Nair, M. Investigation of ac-magnetic field stimulated nanoelectroporation of magneto-electric nano-drug-carrier inside CNS cells. Sci. Rep. 2017, 7, 45663. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, A.; Jayant, R.D.; Nair, M. Advancements in nano-enabled therapeutics for neuroHIV management. Int. J. Nanomed. 2016, 11, 4317–4325. [Google Scholar] [CrossRef] [PubMed]
- Nair, M.; Jayant, R.D.; Kaushik, A.; Sagar, V. Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS. Adv. Drug Deliv. Rev. 2016, 103, 202–217. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhardwaj, V.; Kaushik, A. Biomedical Applications of Nanotechnology and Nanomaterials. Micromachines 2017, 8, 298. https://doi.org/10.3390/mi8100298
Bhardwaj V, Kaushik A. Biomedical Applications of Nanotechnology and Nanomaterials. Micromachines. 2017; 8(10):298. https://doi.org/10.3390/mi8100298
Chicago/Turabian StyleBhardwaj, Vinay, and Ajeet Kaushik. 2017. "Biomedical Applications of Nanotechnology and Nanomaterials" Micromachines 8, no. 10: 298. https://doi.org/10.3390/mi8100298
APA StyleBhardwaj, V., & Kaushik, A. (2017). Biomedical Applications of Nanotechnology and Nanomaterials. Micromachines, 8(10), 298. https://doi.org/10.3390/mi8100298