The Continuous Concentration of Particles and Cancer Cell Line Using Cell Margination in a Groove-Based Channel
Abstract
:1. Introduction
2. Experimental Details
2.1. Methodology
2.2. Design and Fabrication
2.3. Sample Preparation
2.4. Jurkat Cells
2.5. Device Characterisation
3. Results and Discussion
3.1. Validation of Jurkat Cell Movement
3.2. Effect of Flow Rate
3.3. Effect of Channel Height
3.4. Jurkat Cell Concentration
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lianidou, E.S.; Strati, A.; Markou, A. Circulating tumor cells as promising novel biomarkers in solid cancers. Crit. Rev. Clin. Lab. Sci. 2014, 51, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Park, S.; Duffy, S.P.; Matthews, K.; Ang, R.R.; Todenhofer, T.; Abdi, H.; Azad, A.; Bazov, J.; Chi, K.N.; et al. Size and deformability based separation of circulating tumor cells from castrate resistant prostate cancer patients using resettable cell traps. Lab Chip 2015, 15, 2278–2286. [Google Scholar] [CrossRef] [PubMed]
- Au Ieong, K.; Yang, C.; Wong, C.; Shui, A.; Wu, T.; Chen, T.-H.; Lam, R. Investigation of drug cocktail effects on cancer cell-spheroids using a microfluidic drug-screening assay. Micromachines 2017, 8, 167. [Google Scholar] [CrossRef]
- Hyun, K.-A.; Jung, H.-I. Advances and critical concerns with the microfluidic enrichments of circulating tumor cells. Lab Chip 2014, 14, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.N.; Tan, M.J.A.; Wu, H. Point-of-care testing: Applications of 3D printing. Lab Chip 2017, 17, 2713–2739. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, J.; Yuan, D.; Li, W. Hybrid microfluidics combined with active and passive approaches for continuous cell separation. Electrophoresis 2017, 38, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Hyun, K.-A. Microfluidic devices for the isolation of circulating rare cells: A focus on affinity-based, dielectrophoresis, and hydrophoresis Liquid Phase Separations. Electrophoresis 2013, 34, 1028–1041. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhu, T.; Cheng, R.; Liu, Y.; He, J.; Qiu, H.; Wang, L.; Nagy, T.; Querec, T.D.; Unger, E.R. Label-free and continuous-flow ferrohydrodynamic separation of HeLa cells and blood cells in biocompatible ferrofluids. Adv. Funct. Mater. 2016, 26, 3990–3998. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.J.; Lakshmi, R.L.; Chen, P.; Lim, W.-T.; Yobas, L.; Lim, C.T. Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients. Biosens. Bioelectron. 2010, 26, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Sarioglu, A.F.; Aceto, N.; Kojic, N.; Donaldson, M.C.; Zeinali, M.; Hamza, B.; Engstrom, A.; Zhu, H.; Sundaresan, T.K.; Miyamoto, D.T. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 2015, 12, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, J.; Du, W.; Xia, Y.; Wang, D.; Zhao, G.; Chu, J. The optimization of a microfluidic CTC filtering chip by simulation. Micromachines 2017, 8, 79. [Google Scholar] [CrossRef]
- Hou, H.W.; Warkiani, M.E.; Khoo, B.L.; Li, Z.R.; Soo, R.A.; Tan, D.S.-W.; Lim, W.-T.; Han, J.; Bhagat, A.A.S.; Lim, C.T. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 2013, 3, 1259. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.-S.; Kwon, K.; Hyun, K.-A.; Seok Sim, T.; Chan Park, J.; Lee, J.-G.; Jung, H.-I. Continual collection and re-separation of circulating tumor cells from blood using multi-stage multi-orifice flow fractionation. Biomicrofluidics 2013, 7, 014105. [Google Scholar] [CrossRef] [PubMed]
- Hyun, K.-A.; Kwon, K.; Han, H.; Kim, S.-I.; Jung, H.-I. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients. Biosens. Bioelectron. 2013, 40, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yan, S.; Yuan, D.; Alici, G.; Nguyen, N.-T.; Warkiani, M.E.; Li, W. Fundamentals and applications of inertial microfluidics: A review. Lab Chip 2016, 16, 10–34. [Google Scholar] [CrossRef] [PubMed]
- Sollier, E.; Go, D.E.; Che, J.; Gossett, D.R.; O’Byrne, S.; Weaver, W.M.; Kummer, N.; Rettig, M.; Goldman, J.; Nickols, N.; et al. Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip 2014, 14, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Munn, L.L. Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip. Lab Chip 2011, 11, 2941–2947. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.W.; Bhagat, A.A.S.; Chong, A.G.L.; Mao, P.; Tan, K.S.W.; Han, J.; Lim, C.T. Deformability based cell margination—A simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 2010, 10, 2605–2613. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Choi, Y.J.; Seo, H.; Shin, E.C.; Choi, S. Deterministic migration-based separation of white blood cells. Small 2016, 12, 5159–5168. [Google Scholar] [CrossRef] [PubMed]
- Pries, A.; Secomb, T.W.; Gaehtgens, P. Biophysical aspects of blood flow in the microvasculature. Cardiovasc. Res. 1996, 32, 654–667. [Google Scholar] [CrossRef]
- Goldsmith, H.L.; Cokelet, G.R.; Gaehtgens, P. Robin Fahraeus: Evolution of his concepts in cardiovascular physiology. Am. J. Physiol.-Heart Circ. Physiol. 1989, 257, H1005–H1015. [Google Scholar]
- Fiebig, E.; Ley, K.; Arfors, K. Rapid leukocyte accumulation by “spontaneons” rolling and adhesion in the exterioiflized rabbit mesentewy. Int. J. Microcirc. Clin. Exp. 1991, 1000, 127–144. [Google Scholar]
- Fan, R.; Vermesh, O.; Srivastava, A.; Yen, B.K.; Qin, L.; Ahmad, H.; Kwong, G.A.; Liu, C.-C.; Gould, J.; Hood, L. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 2008, 26, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Shevkoplyas, S.S.; Yoshida, T.; Munn, L.L.; Bitensky, M.W. Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal. Chem. 2005, 77, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Ku, T.; Song, S.; Choi, C.; Park, J.-K. Hydrophoretic high-throughput selection of platelets in physiological shear-stress range. Lab Chip 2011, 11, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, J.; Alici, G.; Du, H.; Zhu, Y.; Li, W. Isolating plasma from blood using a dielectrophoresis-active hydrophoretic device. Lab Chip 2014, 14, 2993–3003. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, A.A.S.; Papautsky, I. Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles. J. Micromech. Microeng. 2008, 18, 085005. [Google Scholar] [CrossRef]
- Jin, T.; Yan, S.; Zhang, J.; Yuan, D.; Huang, X.-F.; Li, W. A label-free and high-throughput separation of neuron and glial cells using an inertial microfluidic platform. Biomicrofluidics 2016, 10, 034104. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Song, S.; Choi, C.; Park, J.K. Sheathless focusing of microbeads and blood cells based on hydrophoresis. Small 2008, 4, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Park, J.-K. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip 2007, 7, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, J.; Li, M.; Alici, G.; Du, H.; Sluyter, R.; Li, W. On-chip high-throughput manipulation of particles in a dielectrophoresis-active hydrophoretic focuser. Sci. Rep. 2014, 4, 5060. [Google Scholar] [CrossRef] [PubMed]
- Hellums, J.D. 1993 Whitaker Lecture: Biorheology in thrombosis research. Ann. Biomed. Eng. 1994, 22, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Hou, H.W.; Wu, L.; Amador-Munoz, D.P.; Vera, M.P.; Coronata, A.; Englert, J.A.; Levy, B.D.; Baron, R.M.; Han, J. Broad spectrum immunomodulation using biomimetic blood cell margination for sepsis therapy. Lab Chip 2016, 16, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Strati, A.; Markou, A.; Parisi, C.; Politaki, E.; Mavroudis, D.; Georgoulias, V.; Lianidou, E. Gene expression profile of circulating tumor cells in breast cancer by RT-qPCR. BMC Cancer 2011, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Vine, K.L.; Lobov, S.; Chandran, V.I.; Harris, N.L.E.; Ranson, M. Improved pharmacokinetic and biodistribution properties of the selective urokinase inhibitor PAI-2 (SerpinB2) by site-specific PEGylation: Implications for drug delivery. Pharm. Res. 2015, 32, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Cooke, B.; Coppel, R.; Wahlgren, M. Falciparum malaria: Sticking up, standing out and out-standing. Parasitol. Today 2000, 16, 416–420. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, S.; Yuan, D.; Zhao, Q.; Zhang, J.; Li, W. The Continuous Concentration of Particles and Cancer Cell Line Using Cell Margination in a Groove-Based Channel. Micromachines 2017, 8, 315. https://doi.org/10.3390/mi8110315
Yan S, Yuan D, Zhao Q, Zhang J, Li W. The Continuous Concentration of Particles and Cancer Cell Line Using Cell Margination in a Groove-Based Channel. Micromachines. 2017; 8(11):315. https://doi.org/10.3390/mi8110315
Chicago/Turabian StyleYan, Sheng, Dan Yuan, Qianbin Zhao, Jun Zhang, and Weihua Li. 2017. "The Continuous Concentration of Particles and Cancer Cell Line Using Cell Margination in a Groove-Based Channel" Micromachines 8, no. 11: 315. https://doi.org/10.3390/mi8110315
APA StyleYan, S., Yuan, D., Zhao, Q., Zhang, J., & Li, W. (2017). The Continuous Concentration of Particles and Cancer Cell Line Using Cell Margination in a Groove-Based Channel. Micromachines, 8(11), 315. https://doi.org/10.3390/mi8110315