Microfluidical Microwave Reactor for Synthesis of Gold Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Benchmark Reaction
2.2. Design of the Microreactor
3. Results
3.1. Microreactor Fabrication
3.2. Electrical Measurements
3.3. Nanomaterial Synthesis in the Reactor
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sterzer, F. Microwave medical devices. IEEE Microw. Mag. 2002, 3, 65–70. [Google Scholar] [CrossRef]
- Galema, S.A. Microwave chemistry. Chem. Soc. Rev. 1997, 26, 233–238. [Google Scholar] [CrossRef]
- Leadbeater, N.E. Microwave Heating As a Tool for Sustainable Chemistry, 1st ed.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2010. [Google Scholar]
- Kappe, C.O. Microwave dielectric heating in synthetic organic chemistry. Chem. Soc. Rev. 2008, 37, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Rao, K.J.; Vaidhyanathan, B.; Ganguli, M.; Ramakrishnan, P.A. Synthesis of inorganic solids using microwaves. Chem. Mater. 1999, 11, 882–895. [Google Scholar] [CrossRef]
- Bilecka, I.; Niederberger, M. Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale 2010, 2, 1358–1374. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.J.; Porch, A.; Barrow, D.A.; Allender, C.J. Microfluidic device for compositional analysis of solvent systems at microwave frequencies. Sens. Actuators B Chem. 2012, 169, 213–221. [Google Scholar] [CrossRef]
- Rowe, D.J.; Porch, A.; Barrow, D.A.; Allender, C.J. Microfluidic microwave sensor for simultaneous dielectric and magnetic characterization. IEEE Trans. Microw. Theory Tech. 2013, 61, 234–243. [Google Scholar] [CrossRef]
- Grenier, K.; Dubuc, D.; Poleni, P.E.; Kumemura, M.; Toshiyoshi, H.; Fujii, T.; Fujita, H. Integrated broadband microwave and microfluidic sensor dedicated to bioengineering. IEEE Trans. Microw. Theory Tech. 2009, 57, 3246–3253. [Google Scholar] [CrossRef]
- Booth, J.C.; Orloff, N.D.; Mateu, J.; Janezic, M.; Rinehart, M.; Beall, J.A. Quantitative permittivity measurements of nanoliter liquid volumes in microfluidic channels to 40 GHz. IEEE Instrum. Meas. Mag. 2010, 59, 3279–3288. [Google Scholar] [CrossRef]
- Kempitiya, A.; Borca-Tasciuc, D.A.; Mohamed, H.S.; Hella, M.M. Localized microwave heating in microwells for parallel DNA amplification applications. Appl. Phys. Lett. 2009, 94, 064106. [Google Scholar] [CrossRef]
- Marchiarullo, D.J.; Sklavounos, A.H.; Oh, K.; Poe, B.L.; Barker, N.S.; Landers, J.P. Low-power microwave-mediated heating for microchip-based PCR. Lab Chip 2013, 13, 3417–3425. [Google Scholar] [CrossRef] [PubMed]
- Issadore, D.; Humphry, K.J.; Brown, K.A.; Sandberg, L.; Weitz, D.A.; Westervelt, R.M. Microwave dielectric heating of drops in microfluidic devices. Lab Chip 2009, 9, 1701–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, J.J.; Sundaresan, S.G.; Geist, J.; Reyes, D.R.; Booth, J.C.; Rao, M.V.; Gaitan, M. Microwave dielectric heating of fluids in an integrated microfluidic device. J. Micromech. Microeng. 2007, 17, 2224–2230. [Google Scholar] [CrossRef]
- Shah, J.J.; Geist, J.; Gaitan, M. Microwave-induced adjustable nonlinear temperature gradients in microfluidic devices. J. Micromech. Microeng. 2010, 20, 105025. [Google Scholar] [CrossRef]
- Imanaka, Y. Multilayered Low Temperature Cofired Ceramics (LTCC) Technology, 1st ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Dernovsek, O.; Eberstein, M.; Schiller, W.A.; Naeini, A.; Preu, G.; Wersing, W. LTCC glass-ceramic composites for microwave application. J. Eur. Ceram. Soc. 2001, 21, 1693–1697. [Google Scholar] [CrossRef]
- Sebastian, M.T.; Jantunen, H. Low loss dielectric materials for LTCC applications: A review. Int. Mater. Rev. 2008, 53, 57–90. [Google Scholar] [CrossRef]
- Barteczka, B.; Słobodzian, P.; Dąbrowski, A.; Golonka, L. Influence of sintering process quality on dielectric constant of microwave LTCC substrates. Microelectron. Int. 2014, 31, 169–175. [Google Scholar] [CrossRef]
- Barteczka, B.; Słobodzian, P.; Macioszczyk, J.; Golonka, L. A comparison of two practical methods for measurement of dielectric constant of LTCC substrates. In Proceedings of the 20th International Conference on Microwave Radar and Wireless Communications (MIKON), Gdansk, Poland, 16–18 June 2014; pp. 703–706. [Google Scholar]
- Jurków, D.; Maeder, T.; Dąbrowski, A.; Santo Zarnik, M.; Belavič, D.; Bartsch, H.; Müller, J. Overview on low temperature co-fired ceramic sensors. Sens. Actuators A Phys. 2015, 233, 125–146. [Google Scholar] [CrossRef]
- Peterson, K.A.; Patel, K.D.; Ho, C.K.; Rohde, S.B.; Nordquist, C.D.; Walker, C.A.; Wroblewski, B.D.; Okandan, M. Novel microsystem applications with new techniques in low-temperature co-fired ceramics. Int. J. Appl. Ceram. Technol. 2005, 2, 345–363. [Google Scholar] [CrossRef]
- Vasudev, A.; Kaushik, A.; Jones, K.; Bhanasi, S. Prospects of low temperature co-fired ceramic (LTCC) based microfluidic systems for point-of-care biosensing and environmental sensing. Micorfluids Nanofluids 2013, 14, 683–702. [Google Scholar] [CrossRef]
- Suchorska-Woźniak, P.; Rac, O.; Klimkiewicz, R.; Fiedot, M.; Teterycz, H. Dehydrogenation properties of ZnO and the impact of gold nanoparticles on the process. Appl. Catal. A Gener. 2016, 514, 135–145. [Google Scholar] [CrossRef]
- Das, M.; Shim, K.H.; An, S.S.A.; Yi, D.K. Review on gold nanoparticles and their applications. Toxicol. Environ. Health Sci. 2011, 3, 193–205. [Google Scholar] [CrossRef]
- Faraday, M. The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 1857, 147, 145–181. [Google Scholar] [CrossRef]
- Mohammed, F.S.; Cole, S.R.; Kitchens, C.L. Synthesis and enhanced colloidal stability of cationic gold nanoparticles using polyethyleneimine and carbon dioxide. ACS Sustain. Chem. Eng. 2013, 1, 826–832. [Google Scholar] [CrossRef]
- Ullah, H.; Hossain, T.; Ha, C. Kinetic studies on water-soluble gold nanoparticles coordinated to poly(vinylpyrrolidone): Isotropic to anisotropic transformation and morphology. J. Mater. Sci. 2011, 46, 6988–6997. [Google Scholar] [CrossRef]
- Rahme, K.; Chen, L.; Hobbs, R.G.; Morris, M.A.; O’Driscolle, C.; Holmes, J.D. PEGylated gold nanoparticles: Polymer quantification as a function of PEG lengths and nanoparticle dimensions. RSC Adv. 2013, 3, 6085–6094. [Google Scholar] [CrossRef]
- Juan, M.L.; Righin, M.; Quidant, R. Plasmon nano-optical tweezers. Nat. Photonics 2011, 5, 349–356. [Google Scholar] [CrossRef]
- Sun, X.; Dong, S.; Wang, E. One-step preparation of highly concentrated well-stable gold colloids by direct mix of polyelectrolyte and HAuCl4 aqueous solutions at room temperature. J. Colloid Interface Sci. 2005, 288, 301–303. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Zheng, F.; Shen, M.; Shi, X. Synthesis of polyethyleneimine-stabilized gold nanoparticles for colorimetric sensing of heparin. Colloids Surf. A Physicochem. Eng. Asp. 2013, 419, 80–86. [Google Scholar] [CrossRef]
- Vargas-Hernandez, C.; Mariscal, M.M.; Esparza, R.; Yacaman, M.J. A synthesis route of gold nanoparticles without using a reducing agent. Appl. Phys. Lett. 2010, 96, 213115. [Google Scholar] [CrossRef]
- Ngo, V.K.T.; Nguyen, H.P.U.; Huynh, T.P.; Tran, N.N.P.; Lam, Q.V.; Huynh, T.D. Preparation of gold nanoparticles by microwave heating and application of spectroscopy to study conjugate of gold nanoparticles with antibody E. coli O157:H7. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 035015. [Google Scholar] [CrossRef]
- Augustine, A.K.; Nampoori, V.P.N.; Kailasnath, M. Rapid synthesize of gold nanoparticles by microwave irradiation method and its application as an optical limiting material. Optik-Int. J. Light Electron Opt. 2014, 125, 6696–6699. [Google Scholar] [CrossRef]
- Gutierrez-Wing, C.; Esparza, R.; Vargas-Hernandez, C.; Garcia, M.F.; Jose-Yacaman, M. Microwave-assisted synthesis of gold nanoparticles self-assembled into self-supported superstructures. Nanoscale 2012, 4, 2281–2287. [Google Scholar] [CrossRef] [PubMed]
- Marycz, K.; Kolankowski, J.; Grzesiak, J.; Hecold, M.; Rac, O.; Teterycz, H. Application of gold nanoparticles (AuNPS) of different concentrations to improve the therapeutic potential of autologous conditioned serum (ACS)—Potential implications for equine regenerative medicine. J. Nanomater. 2015, 16, 521207. [Google Scholar] [CrossRef]
- Maleszka, T.; Jaworski, G. Broadband stripline to microstrip transition with constant impedance field matching section for applications in multilayer planar technologies. In Proceedings of the 18th International Conference on Microwave Radar and Wireless Communications (MIKON), Vilnius, Lithuania, 14–16 June 2010; pp. 1–4. [Google Scholar]
- Mini Circuits—Global Leader of RF and Microwave Components. Available online: www.minicircuits.com (accessed on 11 July 2017).
- Mie, G. Contribution to the optics of turbid media particularly of colloidal metal solutions. Ann. Phys. 1908, 25, 377–445. [Google Scholar] [CrossRef]
- Note, C.; Kosmella, S.; Koetz, J. Poly(ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions. Colloids Surf. A Physiochem. Eng. Asp. 2006, 290, 150–156. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys. Condens. Matter 2017, 29, 203002. [Google Scholar] [CrossRef] [PubMed]
- Ngo, V.K.T.; Nguyen, D.G.; Huynh, T.P.; Lam, Q.V. A low cost technique for synthesis of gold nanoparticles using microwave heating and its application in signal amplification for detecting Escherichia Coli O157:H7 bacteria. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 035016. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macioszczyk, J.; Rac-Rumijowska, O.; Słobodzian, P.; Teterycz, H.; Malecha, K. Microfluidical Microwave Reactor for Synthesis of Gold Nanoparticles. Micromachines 2017, 8, 318. https://doi.org/10.3390/mi8110318
Macioszczyk J, Rac-Rumijowska O, Słobodzian P, Teterycz H, Malecha K. Microfluidical Microwave Reactor for Synthesis of Gold Nanoparticles. Micromachines. 2017; 8(11):318. https://doi.org/10.3390/mi8110318
Chicago/Turabian StyleMacioszczyk, Jan, Olga Rac-Rumijowska, Piotr Słobodzian, Helena Teterycz, and Karol Malecha. 2017. "Microfluidical Microwave Reactor for Synthesis of Gold Nanoparticles" Micromachines 8, no. 11: 318. https://doi.org/10.3390/mi8110318
APA StyleMacioszczyk, J., Rac-Rumijowska, O., Słobodzian, P., Teterycz, H., & Malecha, K. (2017). Microfluidical Microwave Reactor for Synthesis of Gold Nanoparticles. Micromachines, 8(11), 318. https://doi.org/10.3390/mi8110318