Electrode Materials in Microfluidic Systems for the Processing and Separation of DNA: A Mini Review
Abstract
:1. Introduction
2. Integrated Electrodes
3. Conclusions
Author Contributions
Conflicts of Interest
References
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.; Zhang, S.; Du, H.; Fu, Y. Fundamental principles and applications of microfluidic systems. Front. Biosci. 2008, 442, 368–373. [Google Scholar] [CrossRef]
- Chin, C.D.; Linder, V.; Sia, S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 2012, 12, 2118–2134. [Google Scholar] [CrossRef] [PubMed]
- Price, C.W.; Leslie, D.C.; Landers, J.P. Nucleic acid extraction techniques and application to the microchip. Lab Chip 2009, 9, 2484–2494. [Google Scholar] [CrossRef] [PubMed]
- Landers, J.P. Molecular diagnostics on electrophoretic microchips. Anal. Chem. 2009, 9, 2484–2494. [Google Scholar] [CrossRef]
- Bruijns, B.; van Asten, A.; Tiggelaar, R.; Gardeniers, H. Microfluidic devices for forensic DNA analysis: A review. Biosensors 2016, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Sambrook, J.; Green, M.R. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012. [Google Scholar]
- Butler, J. Forensic DNA Typing, 2nd ed.; Elsevier Academic Press: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Wolfe, K.A.; Breadmore, M.C.; Ferrance, J.P.; Power, M.E.; Conroy, J.F.; Norris, P.M.; Landers, J.P. Towards a microchip-based solid phase extraction method isolation of nucleic acid. Electrophoresis 2002, 23, 727–733. [Google Scholar] [CrossRef]
- Bishop, D.H.L.; Claybrook, J.R.; Spiegelman, S. Electrophoretic separation of viral nucleic acids. J. Mol. Biol. 1967, 26, 373–387. [Google Scholar] [CrossRef]
- Fangman, W.L. Separation of very large DNA molecules by gel electrophoresis. Nucl. Acids Res. 1978, 5, 653–665. [Google Scholar] [CrossRef] [PubMed]
- Carle, G.F.; Frank, M.; Olsen, M.V. Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science 1986, 232, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Smithies, O. How it all began: A personal history of gel electrophoresis. Methods Mol. Biol. 2012, 869, 1–21. [Google Scholar] [PubMed]
- Landers, J.P. Capillary electrophoresis: Pioneering new approaches for biomolecular analysis. Trends Biochem. Sci. 1993, 18, 409–414. [Google Scholar] [CrossRef]
- Grossman, P.D.; Colburn, J.C. Capillary Electrophoresis: Theory and Practice; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Manz, A.; Harrison, D.J.; Fettinger, J.C.; Verpoorte, E.; Ludi, H.; Widmer, H.M. Integrated electroosmotic pumps and flow manifolds for total chemical analysis. In Proceedings of the 1991 International Conference on Solid-State Sensors and Actuators (TRANSDUCERS ’91), San Francisco, CA, USA, 24–27 June 1991.
- Mcknight, T.E.; Culbertson, C.T.; Jacobson, S.C.; Ramsey, J.M. Electroosmotically induced hydraulic pumping with integrated electrodes on microfluidic devices. Anal. Chem. 2001, 73, 4045–4049. [Google Scholar] [CrossRef] [PubMed]
- Oakley, J.A.; Shaw, K.J.; Docker, P.T.; Dyer, C.E.; Greenman, J.; Greenway, G.M.; Haswell, S.J. Development of a bi-functional silica monolith for electro-osmotic pumping and DNA clean-up/extraction using gel-supported reagents in a microfluidic device. Lab Chip 2009, 9, 1596–1600. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Duarte, R. Microfabrication technologies in dielectrophoresis applications—A review. Electrophoresis 2012, 33, 3110–3132. [Google Scholar] [CrossRef] [PubMed]
- Pethig, R. Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 2010, 4, 022811. [Google Scholar] [CrossRef] [PubMed]
- Gui, L.; Ren, C.L. Numeric simulation of heat transfer and electrokinetic flow in an electroosmotic-based continuous flow PCR chip. Anal. Chem. 2006, 78, 6215–6222. [Google Scholar] [CrossRef] [PubMed]
- Laser, D.J.; Santiago, J.G. A review of micropumps. J. Micromech. Microeng. 2004, 6, 35–64. [Google Scholar] [CrossRef]
- Baldwin, R.P.; Roussel, T.J., Jr.; Crain, M.M.; Bathlagunda, V.; Jackson, D.J.; Gullapalli, J.; Conklin, J.A.; Pai, R.; Naber, J.F.; Walsh, K.M.; et al. Fully Integrated On-Chip Electrochemical Detection for Capillary Electrophoresis in a Microfabricated Device. Anal. Chem. 2002, 74, 3690–3697. [Google Scholar] [CrossRef] [PubMed]
- Lin, B. Microfluidics: Technologies and Applications: Topics in Current Chemistry; Springer: Berlin, Germany, 2011. [Google Scholar]
- Thompson, B.L.; Birch, C.; Nelson, D.A.; Li, J.; DuVall, J.A.; Le Roux, D.S.; Tsuei, A.; Mills, D.L.; Root, B.E.; Landers, J.P. A centrifugal microfluidic device with integrated gold leaf electrodes for the electrophoretic separation of DNA. Lab Chip 2016, 16, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.; Telting-Diaz, M. Electrochemical Sensors. Anal. Chem. 2002, 74, 2781–2800. [Google Scholar] [CrossRef] [PubMed]
- Rossier, J.; Reymond, F.; Michel, P.E. Polymer microfluidic chips for electrochemical and biochemical analyses. Electrophoresis 2002, 23, 858–867. [Google Scholar] [CrossRef]
- Thiyagarajan, N.; Chang, J.; Senthilkumar, K.; Zen, J. Disposable electrochemical sensors: A mini review. Electrochem. Commun. 2014, 38, 86–90. [Google Scholar] [CrossRef]
- Cohen, R.D. Movement and Motion; Matador: Leicester, UK, 2014; p. 12. [Google Scholar]
- Kohlheyer, D.; Eijkel, J.C.T.; Schlautmann, S.; van den Berg, A.; Schasfoort, R.B.M. Bubble-free operation of a microfluidic free-flow electrophoresis chip with integrated Pt electrodes. Anal. Chem. 2008, 80, 4111–4118. [Google Scholar] [CrossRef] [PubMed]
- Tsai, D.-M.; Lin, K.-W.; Zen, J.-M.; Chen, H.-Y.; Hong, R.-H. A new fabrication process for a microchip electrophoresis device integrated with a three-electrode electrochemical detector. Electrophoresis 2005, 26, 3007–3012. [Google Scholar] [CrossRef] [PubMed]
- Kohler, S.; Weilbeer, C.; Howitz, S.; Becker, H.; Beushausen, V.; Belder, D. PDMS free-flow electrophoresis chips with integrated partitioning bars for bubble segregation. Lab Chip 2011, 11, 309–314. [Google Scholar] [CrossRef] [PubMed]
- ABI PRISM 310 Genetic Analyzer: User’s Manual; Applied Biosystems: Foster City, CA, USA, 2010; p. 173.
- Kuschel, M. Analysis of Messenger RNA Using the Agilent 2100 Bioanalyzer and the RNA 6000 LabChip® Kit; Agilent: Santa Clara, CA, USA, 2000; p. 3. [Google Scholar]
- Beckman Coulter® Genome Lab™ Genetic Analysis System: User’s Guide; Beckman Coulter: Brea, CA, USA, 2009; p. 21.
- Zhuang, B.; Han, J.; Xiang, G.; Gan, W.; Wang, S.; Wang, D.; Wang, L.; Sun, J.; Li, C.; Liu, P. fully integrated and automated microsystem for rapid pharmacogenetic typing of multiple warfarin related single-nucleotide polymorphisms. Lab Chip 2016, 16, 86–95. [Google Scholar] [PubMed]
- Hopwood, A.J.; Hurth, C.; Yang, J.; Cai, Z.; Moran, N.; Lee-Edgehill, J.G.; Nordquist, A.; Lenigk, R.; Estes, M.D.; Haley, J.P.; et al. Integrated microfluidic system for rapid forensic DNA analysis: Sample collection to DNA profile. Anal. Chem. 2010, 82, 6991–6999. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.C.; Quesada, M.A.; Mathies, R.A. Capillary array electrophoresis using laser-excited confocal fluorescence detection. Anal. Chem. 1992, 64, 967–972. [Google Scholar] [CrossRef]
- Harrison, D.J.; Manz, A.; Fan, Z. Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal. Chem. 1992, 64, 1926–1932. [Google Scholar] [CrossRef]
- Harrison, D.; Fluri, K.; Seiler, K.; Fan, Z.; Effenhauser, C.S.; Manz, A. Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 1993, 261, 895–897. [Google Scholar] [CrossRef] [PubMed]
- Woolley, A.T.; Mathies, R.A. Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc. Nati. Acad. Sci. USA 1994, 91, 11348–11352. [Google Scholar] [CrossRef]
- Wooley, A.T.; Hadley, D.; Landre, P.; deMello, A.J.; Mathies, R.A.; Northrup, M.A. Functional integration of PCR amplification and capillary electrophoresis in a microfabricated DNA analysis device. Anal. Chem. 1996, 68, 4081–4086. [Google Scholar] [CrossRef]
- McCormick, R.M.; Nelson, R.J.; Alonso-Amigo, M.G.; Benvegnu, D.J.; Hooper, H.H. Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates. Anal. Chem. 1997, 69, 2626–2630. [Google Scholar] [CrossRef] [PubMed]
- Sanders, J.; Breadmore, M.C.; Mitchell, P.S.; Landers, J.P. A simple PDMS-based electro-fluidic interface for microchip electrophoretic separations. Analyst 2002, 127, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Zhong, M.; Lunte, S.M. Integrated On-Capillary Electrochemical Detector for Capillary Electrophoresis. Anal. Chem. 1996, 68, 2488–2493. [Google Scholar] [CrossRef] [PubMed]
- Voegel, P.D.; Zhou, W.; Baldwin, R.P. Integrated capillary electrophoresis electrochemical detection with metal film electrodes directly deposited onto the capillary tip. Anal. Chem. 1997, 69, 951–957. [Google Scholar] [CrossRef] [PubMed]
- Burns, M.A.; Johnson, B.N.; Brahmasandra, S.N.; Handique, K.; Webster, J.R.; Krishnan, M.; Sammarco, T.S.; Man, P.M.; Jones, D.; Heldsinger, D.; et al. An integrated Nanoliter DNA Analysis Device. Science 1998, 282, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Woolley, A.T.; Lao, K.; Glazer, A.N.; Mathies, R.A. Capillary Electrophoresis Chips with Integrated Electrochemical Detection. Anal. Chem. 1998, 70, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Lagally, E.T.; Scherer, J.R.; Blazej, R.G.; Toriello, N.M.; Diep, B.A.; Ramchandani, M.; Sensabaugh, G.F.; Riley, L.W.; Mathies, R.A. Integrated Portable Genetic Analysis Microsystem for Pathogen/Infectious Disease Detection. Anal. Chem. 2004, 76, 3162–3170. [Google Scholar] [CrossRef] [PubMed]
- Floris, A.; Staal, S.; Lenk, S.; Staijen, E.; Kohlheyer, D.; Eijkel, J.; van den Berg, A. A prefilled, ready-to-use electrophoresis based lab-on-a-chip device for monitoring lithium in blood. Lab Chip 2010, 10, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.K.; Chand, R.; Han, D.; Jang, Y.; Ra, G.; Kim, J.S.; Nahmb, B.; Kim, Y. An integrated PCR microfluidic chip incorporating aseptic electrochemical cell lysis and capillary electrophoresis amperometric DNA detection for rapid and quantitative genetic analysis. Lab Chip 2012, 12, 4455–4464. [Google Scholar] [CrossRef] [PubMed]
- Le Roux, D.; Root, B.E.; Hickey, J.A.; Scott, O.N.; Tsuei, A.; Li, J.; Saul, D.J.; Chassagne, L.; Landers, J.P.; de Mazencourt, P. An integrated sample-in-answer-out microfluidic chip for rapid human identification by STR analysis. Lab Chip 2014, 14, 4415–4425. [Google Scholar] [CrossRef] [PubMed]
- Koh, C.G.; Tan, W.; Zhao, M.; Ricco, A.J.; Hugh Fan, Z. Integrating polymerase chain reaction, valving and electrophoresis in a plastic device for bacterial detection. Anal. Chem. 2003, 75, 4591–4598. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, C.; Li, Z.; Chan, S.D.; Eto, D.; Wu, W.; Zhang, J.P.; Chien, R.-L.; Wada, H.G.; Greenstein, M.; et al. On-chip quantitation PCR using integrated real-time detection by capillary electrophoresis. Electrophoresis 2016, 37, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.J.; Joyce, D.A.; Docker, P.T.; Dyer, C.E.; Greenway, G.M.; Greenman, J.; Haswell, S.J. Development of a real-world direct interface for integrated DNA extraction and amplification in a microfluidic device. Lab Chip 2011, 11, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Krebs, F.C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 2009, 93, 394–412. [Google Scholar] [CrossRef]
- Taleat, Z.; Khoshroo, A.; Mazloum-Ardakani, M. Screen-printed electrodes for biosensing: A review (2008–2013). Microchim. Acta 2014, 181, 865–891. [Google Scholar] [CrossRef]
- Nie, Z.; Nijhuis, C.A.; Gong, J.; Chen, X.; Kumachev, A.; Martinez, A.W.; Narovlyansky, M.; Whitesides, G.M. Electrochemical sensing in paper-based microfluidic devices. Lab Chip 2010, 10, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ballerini, D.R.; Shen, W. A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics 2012, 6, 011301. [Google Scholar] [CrossRef] [PubMed]
- Dungchai, W.; Chailapukal, O.; Henry, C.S. Electrochemical Detection for Paper-Based Microfluidics. Anal. Chem. 2009, 81, 5821–5826. [Google Scholar] [CrossRef] [PubMed]
- Manz, A.; Effenhauser, C.S.; Burggraf, N.; Harrison, D.J.; Seiler, K.; Fluri, K. Electroosmotic pumping and electrophoretic separations for miniaturized chemical analysis systems. J. Micromech. Microeng. 1993, 4, 257. [Google Scholar] [CrossRef]
- Bengtsson, K.; Nilsson, S.; Robinson, N.D. Conducting polymer electrodes for gel electrophoresis. PLoS ONE 2014, 9, e89416. [Google Scholar] [CrossRef] [PubMed]
- Henderson, R.D.; Guijt, R.M.; Haddad, P.R.; Hilder, E.F.; Lewis, T.W.; Breadmore, M.C. Manufacturing and application of a fully polymeric electrophoresis chip with integrated polyaniline electrodes. Lab Chip 2010, 10, 1869–1872. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Huang, J.; Kaner, R.B. Polyaniline Nanofibers: A Unique Polymer Nanostructure for Versatile Applications. Acc. Chem. Res. 2009, 42, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Do Lago, C.L.; da Silva, H.D.; Neves, C.A.; Brito-Neto, J.G.; da Silva, J.A. A dry process for production of microfluidic devices based on the lamination of laser-printed polyester films. Anal. Chem. 2003, 75, 3853–3858. [Google Scholar] [CrossRef] [PubMed]
- Thompson, B.L.; Ouyang, Y.; Duarte, G.R.M.; Carrilho, E.; Krauss, S.T.; Landers, J.P. Inexpensive, rapid protoyping of microfluidic devices using overhead transparencies and laser print, cut and laminate fabrication method. Nat. Protoc. 2015, 10, 875–886. [Google Scholar] [CrossRef] [PubMed]
- Angnes, L.; Richter, E.M.; Augelli, M.A.; Gustavo, G.H. Gold electrodes from recordable CDs. Anal. Chem. 2000, 72, 5503–5506. [Google Scholar] [CrossRef] [PubMed]
- Eduardo M Richter, E.M.; Augelli, M.A.; Kume, G.H.; Mioshi, R.N.; Angnes, L. Gold electrodes from recordable CDs for mercury quantification by flow injection analysis. Anal. Bioanal. Chem. 2000, 366, 444–448. [Google Scholar] [CrossRef]
- Daniel, D.; Gutz, I.G.R. Quick production of gold electrode sets or arrays and of microfluidic flow cells based on heat transfer of laser printed toner masks onto compact disks. Electrochem. Commun. 2003, 5, 782–786. [Google Scholar] [CrossRef]
- Foguel, M.V.; dos Santos, G.P.; Ferreira, A.A.P.; Magnani, M.; Mascini, M.; Skladal, P.; Benedetti, A.V.; Yamanaka, H. Comparison of Gold CD-R Types as Electrochemical Device and as Platform for Biosensors. J. Braz. Chem. Soc. 2016, 27, 650–662. [Google Scholar] [CrossRef]
- Ciesielski, P.N.; Scott, A.M.; Faulkner, C.J.; Berron, B.J.; Cliffel, D.E.; Jennings, G.K. Functionalized nanoporous gold leaf electrode films for the immobilization of photosystem I. ACS Nano 2008, 2, 2462–2472. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, R.; Zhang, X. Electrochemiluminescence immunoassay at a nanoporous gold leaf electrode and using CdTe quantun dots as labels. Microchim. Acta 2011, 172, 285–290. [Google Scholar] [CrossRef]
- Genexpert Dx System: Operator Guide; Cepheid: Sunnyvale, CA, USA, 2012.
- Blackman, S.; Dawnay, N.; Ball, G.; Stafford-Allen, B.; Tribble, N.; Rendall, P.; Neary, K.; Hanson, E.K.; Ballantyne, J.; Kallifatidis, B.; et al. Developmental validation of the ParaDNA1 intelligence system—A novel approach to DNA profiling. Forensic. Sci. Int. Genet. 2015, 17, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Jovanovich, S.; Bogdan, G.; Belcinski, R.; Buscaino, J.; Burgi, D.; Butts, E.L.R.; Chear, K.; Ciopyk, B.; Eberhart, D.; El-Sissi, O.; et al. Developmental validation of a fully integrated sample-to-profile rapid human identification system for processing single-source reference buccal samples. Forensic. Sci. Int. Genet. 2015, 16, 181–194. [Google Scholar] [CrossRef] [PubMed]
- NEC: Portable DNA. Available online: http://th.nec.com/en_TH/solution/safetysocial/portabledna.htmlx (accessed on 1 December 2016).
- Turingan, R.S.; Vasantgadkar, S.; Palombo, L.; Hogan, C.; Jiang, H.; Tan, E.; Selden, R.F. Rapid DNA analysis for automated processing and interpretation of low DNA content samples. Investig. Genet. 2016, 7, 2. [Google Scholar] [CrossRef] [PubMed]
Material | Electrical Conductivity (10 × 106 Siemens/m) | Electrical Resistivity (10 × 10−8 Ohm·m) | Density (g/cm3) | Melting Point or Degradation (°C) | Cost (USD/Lb) |
---|---|---|---|---|---|
Platinum | 9.3 | 10.8 | 21.4 | 1772 | 14,915.52 |
Silver | 62.1 | 1.6 | 10.5 | 961 | 269.28 |
Copper | 58.5 | 1.7 | 8.9 | 1083 | 252 |
Gold | 44.2 | 2.3 | 19.4 | 1064 | 19,526.4 |
Aluminum | 36.9 | 2.7 | 2.7 | 660 | 0.79 |
Lithium | 10.8 | 9.3 | 0.54 | 181 | 3.4 |
Carbon (ex polyacrylonitrile (PAN)) | 5.9 | 16.9 | 1.8 | 2500 | 10.5 |
Nickel | 14.3 | 7 | 8.8 | 1455 | 5.31 |
Electrode Type | Ease of Fabrication | Cost of Fabrication (Per Device) | Issues | References |
---|---|---|---|---|
Wire | Easy | >$20 | Difficult to integrate, often used with open device | [39,40,41,42] |
Integrated wire | Difficult | >$20 | Leakage issues | [43,44] |
Sputter/evaporation | Difficult | >$10 | Equipment requires trained personnel | [47,48,49,52,53] |
Screen printed | Easy | <$1 | Durability on some surfaces | [54,55] |
Conductive polymer | Medium | <$5 | Loss of conductivity at high voltages | [63,64,65] |
Recordable CDs | Medium | <$1 | Potential difficulties integrating with complex fluidics | [68,69,70] |
Synthesized gold leaf | Difficult | <$1 | Potential difficulties scaling synthetic protocol | [72,73] |
Gold leaf | Easy | <10¢ | Susceptible to damage upon contact | [25] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birch, C.; Landers, J.P. Electrode Materials in Microfluidic Systems for the Processing and Separation of DNA: A Mini Review. Micromachines 2017, 8, 76. https://doi.org/10.3390/mi8030076
Birch C, Landers JP. Electrode Materials in Microfluidic Systems for the Processing and Separation of DNA: A Mini Review. Micromachines. 2017; 8(3):76. https://doi.org/10.3390/mi8030076
Chicago/Turabian StyleBirch, Christopher, and James P. Landers. 2017. "Electrode Materials in Microfluidic Systems for the Processing and Separation of DNA: A Mini Review" Micromachines 8, no. 3: 76. https://doi.org/10.3390/mi8030076
APA StyleBirch, C., & Landers, J. P. (2017). Electrode Materials in Microfluidic Systems for the Processing and Separation of DNA: A Mini Review. Micromachines, 8(3), 76. https://doi.org/10.3390/mi8030076