Tip-Based Nanofabrication for Scalable Manufacturing
Abstract
:1. Introduction
2. History of Tip-Based Nanofabrication
3. Overview of Tip-Based Nanofabrication (TBN)
3.1. Atom Removing-Based TBN
3.2. Thermal TBN Techniques
3.3. Electro-Chemical TBN
3.4. TBN-Using Optics
3.5. TBN Using Molecular Diffusion
3.6. TBN via Mechanical Removal
3.7. TBN Using Field Emission
4. Advancement of Scalable TBN Approaches
4.1. Passive Tip Array
4.2. Active Tip Array
5. Conclusions and Outlooks
Acknowledgement
Author Contributions
Conflicts of Interest
References
- Tseng, A.A.; Kuan, C.; Chen, C.D.; Ma, K.J. Electron beam lithography in nanoscale fabrication: Recent development. IEEE Trans. Electron. Packag. Manuf. 2003, 26, 141–149. [Google Scholar] [CrossRef]
- Duan, H.; Winston, D.; Yang, J.K.W.; Cord, B.M.; Manfrinato, V.R.; Berggren, K.K. Sub-10-nm half-pitch electron-beam lithography by using poly(methyl methacrylate) as a negative resist. J. Vac. Sci. Technol. B 2010, 28, C6C58–C56C62. [Google Scholar] [CrossRef]
- Yang, J.K.W.; Cord, B.; Duan, H.; Berggren, K.K.; Klingfus, J.; Nam, S.-W.; Kim, K.-B.; Rooks, M.J. Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography. J. Vac. Sci. Technol. B 2009, 27, 2622–2627. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Kodali, V.K.; Curtis, J.E.; Riedo, E. Nanofabrication of functional nanostructures by thermochemical nanolithography. In Tip-Based Nanofabrication: Fundamentals and Applications; Tseng, A.A., Ed.; Springer: New York, NY, USA, 2011; pp. 265–297. [Google Scholar]
- Xia, Y.; Whitesides, G.M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
- Xia, Y.; Kim, E.; Zhao, X.-M.; Rogers, J.A.; Prentiss, M.; Whitesides, G.M. Complex optical surfaces formed by replica molding against elastomeric masters. Science 1996, 273, 347–349. [Google Scholar] [CrossRef] [PubMed]
- Krausch, G.; Magerle, R. Nanostructured thin films via self-assembly of block copolymers. Adv. Mater. 2002, 14, 1579–1583. [Google Scholar] [CrossRef]
- Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 1995, 67, 3114–3116. [Google Scholar] [CrossRef]
- Chou, S.Y.; Krauss, P.R.; Renstrom, P.J. Nanoimprint lithography. J. Vac. Sci. Technol. B 1996, 14, 4129–4133. [Google Scholar] [CrossRef]
- Gates, B.D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C.G.; Whitesides, G.M. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 2005, 105, 1171–1196. [Google Scholar] [CrossRef] [PubMed]
- Odom, T.W.; Thalladi, V.R.; Love, J.C.; Whitesides, G.M. Generation of 30−50 nm structures using easily fabricated, composite PDMS masks. J. Am. Chem. Soc. 2002, 124, 12112–12113. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Liu, Y.; Wathuthanthri, I.; Choi, C.-H. Dual applications of free-standing holographic nanopatterns for lift-off and stencil lithography. J. Vac. Sci. Technol. B 2012, 30, 06FF04. [Google Scholar] [CrossRef]
- Vazquez-Mena, O.; Gross, L.; Xie, S.; Villanueva, L.G.; Brugger, J. Resistless nanofabrication by stencil lithography: A review. Microelectron. Eng. 2015, 132, 236–254. [Google Scholar] [CrossRef]
- Du, K.; Wathuthanthri, I.; Mao, W.; Xu, W.; Choi, C.-H. Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography. Nanotechnology 2011, 22, 285306. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Hong, M.H.; Tan, H.L.; Chen, G.X.; Shi, L.P.; Chong, T.C. Fabrication of nanostructures with laser interference lithography. J. Alloys Compd. 2008, 449, 261–264. [Google Scholar] [CrossRef]
- Wolferen, H.V.; Abelmann, L. Laser interference lithography. In Lithography: Principles, Processes and Materials; Hennessy, T.C., Ed.; Nova Publishers: Hauppauge, NY, USA, 2011; pp. 133–148. [Google Scholar]
- Chen, Y.; Xu, Z.; Gartia, M.R.; Whitlock, D.; Lian, Y.; Liu, G.L. Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching. ACS Nano 2011, 5, 8002–8012. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Swaminathan, V.V.; Farahani, M.R.Z.; Mensing, G.; Yeom, J.; Shannon, M.A.; Zhu, L. Hierarchically structured re-entrant microstructures for superhydrophobic surfaces with extremely low hysteresis. J. Micromech. Microeng. 2014, 24, 095023. [Google Scholar] [CrossRef]
- Ke, D.; Ishan, W.; Yuyang, L.; Yong Tae, K.; Chang-Hwan, C. Fabrication of polymer nanowires via maskless O2 plasma etching. Nanotechnology 2014, 25, 165301. [Google Scholar]
- Bloschock, K.P.; Schofield, A.R.; Kenny, T.W. Tip-based nanofabrication: An approach to true nanotechnology. Proc. SPIE 2011. [Google Scholar] [CrossRef]
- Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 1982, 49, 57–61. [Google Scholar] [CrossRef]
- Binnig, G.; Quate, C.F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett. 1986, 56, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Hoh, J.H.; Hansma, P.K. Atomic force microscopy for high-resolution imaging in cell biology. Trends Cell Biol. 1992, 2, 208–213. [Google Scholar] [CrossRef]
- Hansma, P.; Elings, V.; Marti, O.; Bracker, C. Scanning tunneling microscopy and atomic force microscopy: Application to biology and technology. Science 1988, 242, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.S.; Frommer, J.E.; Arnett, P.C. Molecular manipulation using a tunnelling microscope. Nature 1988, 331, 324–326. [Google Scholar] [CrossRef] [PubMed]
- Becker, R.S.; Golovchenko, J.A.; Swartzentruber, B.S. Atomic-scale surface modifications using a tunnelling microscope. Nature 1987, 325, 419–421. [Google Scholar] [CrossRef]
- Eigler, D.M.; Schweizer, E.K. Positioning single atoms with a scanning tunnelling microscope. Nature 1990, 344, 524–526. [Google Scholar] [CrossRef]
- Shen, T.; Wang, C.; Abeln, G.; Tucker, J. Atomic-scale desorption through electronic and vibrational excitation mechanisms. Science 1995, 268, 1590. [Google Scholar] [CrossRef] [PubMed]
- King, W.P.; Kenny, T.W.; Goodson, K.E.; Cross, G.; Despont, M.; Dürig, U.; Rothuizen, H.; Binnig, G.K.; Vettiger, P. Atomic force microscope cantilevers for combined thermomechanical data writing and reading. Appl. Phys. Lett. 2001, 78, 1300–1302. [Google Scholar] [CrossRef]
- Vettiger, P.; Despont, M.; Drechsler, U.; Durig, U.; Haberle, W.; Lutwyche, M.I.; Rothuizen, H.E.; Stutz, R.; Widmer, R.; Binnig, G.K. The Millipede—More than thousand tips for future AFM storage. IBM J. Res. Dev. 2000, 44, 323–340. [Google Scholar] [CrossRef]
- Lyding, J.W.; Shen, T.C.; Hubacek, J.S.; Tucker, J.R.; Abeln, G.C. Nanoscale patterning and oxidation of H-passivated Si(100)-2×1 surfaces with an ultrahigh vacuum scanning tunneling microscope. Appl. Phys. Lett. 1994, 64, 2010–2012. [Google Scholar] [CrossRef]
- Hersam, M.C.; Guisinger, N.P.; Lyding, J.W.; Thompson, D.S.; Moore, J.S. Atomic-level study of the robustness of the Si(100)-2×1:H surface following exposure to ambient conditions. Appl. Phys. Lett. 2001, 78, 886–888. [Google Scholar] [CrossRef]
- Walsh, M.A.; Hersam, M.C. Atomic-scale templates patterned by ultrahigh vacuum scanning tunneling microscopy on silicon. Annu. Rev. Phys. Chem. 2009, 60, 193–216. [Google Scholar] [CrossRef] [PubMed]
- Ballard, J.B.; Sisson, T.W.; Owen, J.H.G.; Owen, W.R.; Fuchs, E.; Alexander, J.; Randall, J.N.; Von Ehr, J.R. Multimode hydrogen depassivation lithography: A method for optimizing atomically precise write times. J. Vac. Sci. Technol. B 2013, 31, 06FC01. [Google Scholar] [CrossRef]
- Ballard, J.B.; Owen, J.H.G.; Owen, W.; Alexander, J.R.; Fuchs, E.; Randall, J.N.; Von Ehr, J.R.; McDonnell, S.; Dick, D.D.; Wallace, R.M.; et al. Pattern transfer of hydrogen depassivation lithography patterns into silicon with atomically traceable placement and size control. J. Vac. Sci. Technol. B 2014, 32, 041804. [Google Scholar] [CrossRef]
- Ballard, J.B.; Owen, J.H.G.; Alexander, J.D.; Owen, W.R.; Fuchs, E.; Randall, J.N.; Longo, R.C.; Cho, K. Spurious dangling bond formation during atomically precise hydrogen depassivation lithography on Si(100): The role of liberated hydrogen. J. Vac. Sci. Technol. B 2014, 32, 021805. [Google Scholar] [CrossRef]
- Ruess, F.J.; Oberbeck, L.; Simmons, M.Y.; Goh, K.E.J.; Hamilton, A.R.; Hallam, T.; Schofield, S.R.; Curson, N.J.; Clark, R.G. Toward atomic-scale device fabrication in silicon using scanning probe microscopy. Nano Lett. 2004, 4, 1969–1973. [Google Scholar] [CrossRef]
- Owen, J.H.G.; Ballard, J.; Randall, J.N.; Alexander, J.; Von Ehr, J.R. Patterned atomic layer epitaxy of Si/Si(001):H. J. Vac. Sci. Technol. B 2011, 29, 06F201. [Google Scholar] [CrossRef]
- Goh, K.E.J.; Chen, S.; Xu, H.; Ballard, J.; Randall, J.N.; Von Ehr, J.R. Using patterned H-resist for controlled three-dimensional growth of nanostructures. Appl. Phys. Lett. 2011, 98, 163102. [Google Scholar] [CrossRef]
- Soukiassian, L.; Mayne, A.J.; Carbone, M.; Dujardin, G. Atomic wire fabrication by STM induced hydrogen desorption. Surf. Sci. 2003, 528, 121–126. [Google Scholar] [CrossRef]
- Mamin, H.J.; Rugar, D. Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 1992, 61, 1003–1005. [Google Scholar] [CrossRef]
- Chui, B.W.; Stowe, T.D.; Kenny, T.W.; Mamin, H.J.; Terris, B.D.; Rugar, D. Low-stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope. Appl. Phys. Lett. 1996, 69, 2767–2769. [Google Scholar] [CrossRef]
- Chui, B.W.; Stowe, T.D.; Yongho Sungtaek, J.; Goodson, K.E.; Kenny, T.W.; Mamin, H.J.; Terris, B.D.; Ried, R.P.; Rugar, D. Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density afm thermomechanical data storage. J. Microelectromech. Syst. 1998, 7, 69–78. [Google Scholar] [CrossRef]
- Drechsler, U.; Bürer, N.; Despont, M.; Dürig, U.; Gotsmann, B.; Robin, F.; Vettiger, P. Cantilevers with nano-heaters for thermomechanical storage application. Microelectron. Eng. 2003, 67–68, 397–404. [Google Scholar] [CrossRef]
- Pollock, H.M.; Hammiche, A. Micro-thermal analysis: Techniques and applications. J. Phys. D Appl. Phys. 2001, 34, R23. [Google Scholar] [CrossRef]
- Lee, D.W.; Takahito, O.; Masayoshi, E. Fabrication of thermal microprobes with a sub-100 nm metal-to-metal junction. Nanotechnology 2002, 13, 29. [Google Scholar] [CrossRef]
- Lee, J.; Beechem, T.; Wright, T.L.; Nelson, B.A.; Graham, S.; King, W.P. Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. J. Microelectromech. Syst. 2006, 15, 1644–1655. [Google Scholar] [CrossRef]
- Privorotskaya, N.L.; King, W.P. Silicon microcantilever hotplates with high temperature uniformity. Sens. Actuators A Phys. 2009, 152, 160–167. [Google Scholar] [CrossRef]
- Goericke, F.; Lee, J.; King, W.P. Microcantilever hotplates with temperature-compensated piezoresistive strain sensors. Sens. Actuators A Phys. 2008, 143, 181–190. [Google Scholar] [CrossRef]
- Edinger, K.; Gotszalk, T.; Rangelow, I.W. Novel high resolution scanning thermal probe. J. Vac. Sci. Technol. B 2001, 19, 2856–2860. [Google Scholar] [CrossRef]
- Rothuizen, H.; Despont, M.; Drechsler, U.; Hagleitner, C.; Sebastian, A.; Wiesmann, D. Design of power-optimized thermal cantilevers for scanning probe topography sensing. In Proceedings of the 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems, Sorrento, Italy, 25–29 January 2009.
- Mark, A.L.; Gerd, K.B.; Michel, D.; Ute, D. A micromechanical thermal displacement sensor with nanometre resolution. Nanotechnology 2005, 16, 1089. [Google Scholar]
- Bae, J.H.; Ono, T.; Esashi, M. Scanning probe with an integrated diamond heater element for nanolithography. Appl. Phys. Lett. 2003, 82, 814–816. [Google Scholar] [CrossRef]
- Dai, Z.; King, W.P.; Park, K. A 100 nanometer scale resistive heater–thermometer on a silicon cantilever. Nanotechnology 2009, 20, 095301. [Google Scholar] [CrossRef] [PubMed]
- King, W.P.; Bhatia, B.; Felts, J.R.; Kim, H.J.; Kwon, B.; Lee, B.; Somnath, S.; Rosenberger, M. Heated atomic force microscope cantilevers and their applications. Annu. Rev. Heat Transf. 2013, 16. [Google Scholar] [CrossRef]
- Sheehan, P.E.; Whitman, L.J.; King, W.P.; Nelson, B.A. Nanoscale deposition of solid inks via thermal dip pen nanolithography. Appl. Phys. Lett. 2004, 85, 1589–1591. [Google Scholar] [CrossRef]
- Yang, M.; Sheehan, P.E.; King, W.P.; Whitman, L.J. Direct writing of a conducting polymer with molecular-level control of physical dimensions and orientation. J. Am. Chem. Soc. 2006, 128, 6774–6775. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-K.; Whitman, L.J.; Lee, J.; King, W.P.; Sheehan, P.E. The nanopatterning of a stimulus-responsive polymer by thermal dip-pen nanolithography. Soft Matter 2008, 4, 1844–1847. [Google Scholar] [CrossRef]
- Lee, W.K.; Dai, Z.; King, W.P.; Sheehan, P.E. Maskless nanoscale writing of nanoparticle−polymer composites and nanoparticle assemblies using thermal nanoprobes. Nano Lett. 2010, 10, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Felts, J.R.; Kjoller, K.; Lo, M.; Prater, C.B.; King, W.P. Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication. ACS Nano 2012, 6, 8015–8021. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Hu, H.; Chen, W.; Lu, M.; Tian, L.; Yu, H.; Long, K.D.; Chow, E.; King, W.P.; Singamaneni, S.; et al. Single nanoparticle detection using photonic crystal enhanced microscopy. Analyst 2014, 139, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Jonathan, R.F.; Suhas, S.; Randy, H.E.; William, P.K. Nanometer-scale flow of molten polyethylene from a heated atomic force microscope tip. Nanotechnology 2012, 23, 215301. [Google Scholar]
- Hu, H.; Mohseni, P.K.; Pan, L.; Li, X.; Somnath, S.; Felts, J.R.; Shannon, M.A.; King, W.P. Fabrication of arbitrarily shaped silicon and silicon oxide nanostructures using tip-based nanofabrication. J. Vac. Sci. Technol. B 2013, 31, 06FJ01. [Google Scholar] [CrossRef]
- Craighead, H.G. Nanoelectromechanical systems. Science 2000, 290, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Cho, H.; Somnath, S.; Vakakis, A.; King, W.P. Silicon nano-mechanical resonators fabricated by using tip-based nanofabrication. Nanotechnology 2014, 25, 275301. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhuo, Y.; Oruc, M.E.; Cunningham, B.T.; King, W.P. Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication. Nanotechnology 2014, 25, 455301. [Google Scholar] [CrossRef] [PubMed]
- Hu, H. Nano-Electro-Mechanical Systems Fabricated by Tip-Based Nanofabrication; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2014. [Google Scholar]
- Hu, H.; Banerjee, S.; Estrada, D.; Bashir, R.; King, W.P. Tip-based nanofabrication of arbitrary shapes of graphene nanoribbons for device applications. RSC Adv. 2015, 5, 37006–37012. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.A.; King, W.P.; Laracuente, A.R.; Sheehan, P.E.; Whitman, L.J. Direct deposition of continuous metal nanostructures by thermal dip-pen nanolithography. Appl. Phys. Lett. 2006, 88, 033104. [Google Scholar] [CrossRef]
- Basu, A.S.; McNamara, S.; Gianchandani, Y.B. Scanning thermal lithography: Maskless, submicron thermochemical patterning of photoresist by ultracompliant probes. J. Vac. Sci. Technol. B 2004, 22, 3217–3220. [Google Scholar] [CrossRef]
- Bakbak, S.; Leech, P.J.; Carson, B.E.; Saxena, S.; King, W.P.; Bunz, U.H.F. 1,3-Dipolar cycloaddition for the generation of nanostructured semiconductors by heated probe tips. Macromolecules 2006, 39, 6793–6795. [Google Scholar] [CrossRef]
- Wang, D.; Kim, S.; Underwood, W.D.; Giordano, A.J.; Henderson, C.L.; Dai, Z.; King, W.P.; Marder, S.R.; Riedo, E. Direct writing and characterization of poly(p-phenylene vinylene) nanostructures. Appl. Phys. Lett. 2009, 95, 233108. [Google Scholar] [CrossRef]
- Fenwick, O.; Bozec, L.; Credgington, D.; Hammiche, A.; Lazzerini, G.M.; Silberberg, Y.R.; Cacialli, F. Thermochemical nanopatterning of organic semiconductors. Nat Nano 2009, 4, 664–668. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Wang, D.; Kim, S.; Kim, S.-Y.; Hu, Y.; Yakes, M.K.; Laracuente, A.R.; Dai, Z.; Marder, S.R.; Berger, C.; et al. Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 2010, 328, 1373–1376. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.; Hedrick, J.L.; De Silva, A.; Frommer, J.; Gotsmann, B.; Wolf, H.; Despont, M.; Duerig, U.; Knoll, A.W. Nanoscale three-dimensional patterning of molecular resists by scanning probes. Science 2010, 328, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Saxena, S.; Henderson, C.L.; King, W.P. Nanoscale thermal lithography by local polymer decomposition using a heated atomic force microscope cantilever tip. J. Micro/Nanolithogr. MEMS MOEMS 2007, 6, 023012. [Google Scholar]
- Wolf, H.; Rawlings, C.; Mensch, P.; Hedrick, J.L.; Coady, D.J.; Duerig, U.; Knoll, A.W. Sub-20 nm silicon patterning and metal lift-off using thermal scanning probe lithography. J. Vac. Sci. Technol. B 2015, 33, 02B102. [Google Scholar] [CrossRef]
- Neuber, C.; Schmidt, H.-W.; Strohriegl, P.; Ringk, A.; Kolb, T.; Schedl, A.; Fokkema, V.; van Veghel, M.G.A.; Cooke, M.; Rawlings, C.; et al. Tailored molecular glass resists for scanning probe lithography. Proc. SPIE 2015. [Google Scholar] [CrossRef]
- Dagata, J.A.; Schneir, J.; Harary, H.H.; Evans, C.J.; Postek, M.T.; Bennett, J. Modification of hydrogen-passivated silicon by a scanning tunneling microscope operating in air. Appl. Phys. Lett. 1990, 56, 2001–2003. [Google Scholar] [CrossRef]
- Garcia, R.; Martinez, R.V.; Martinez, J. Nano-chemistry and scanning probe nanolithographies. Chem. Soc. Rev. 2006, 35, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Day, H.C.; Allee, D.R. Selective area oxidation of silicon with a scanning force microscope. Appl. Phys. Lett. 1993, 62, 2691–2693. [Google Scholar] [CrossRef]
- Komijani, Y.; Csontos, M.; Ihn, T.; Ensslin, K.; Meir, Y.; Reuter, D.; Wieck, A.D. Origins of conductance anomalies in a p-type GaAs quantum point contact. Phys. Rev. B 2013, 87, 245406. [Google Scholar] [CrossRef]
- Fuhrer, A.; Luscher, S.; Ihn, T.; Heinzel, T.; Ensslin, K.; Wegscheider, W.; Bichler, M. Energy spectra of quantum rings. Nature 2001, 413, 822–825. [Google Scholar] [CrossRef] [PubMed]
- Ubbelohde, N.; Fricke, C.; Hohls, F.; Haug, R.J. Spin-dependent shot noise enhancement in a quantum dot. Phys. Rev. B 2013, 88, 041304. [Google Scholar] [CrossRef]
- Ramses, V.M.; Javier, M.; Ricardo, G. Silicon nanowire circuits fabricated by AFM oxidation nanolithography. Nanotechnology 2010, 21, 245301. [Google Scholar]
- Kurra, N.; Reifenberger, R.G.; Kulkarni, G.U. Nanocarbon-scanning probe microscopy synergy: Fundamental aspects to nanoscale devices. ACS Appl. Mater. Interfaces 2014, 6, 6147–6163. [Google Scholar] [CrossRef] [PubMed]
- Byun, I.-S.; Yoon, D.; Choi, J.S.; Hwang, I.; Lee, D.H.; Lee, M.J.; Kawai, T.; Son, Y.-W.; Jia, Q.; Cheong, H.; et al. Nanoscale lithography on monolayer graphene using hydrogenation and oxidation. ACS Nano 2011, 5, 6417–6424. [Google Scholar] [CrossRef] [PubMed]
- Puddy, R.K.; Chua, C.J.; Buitelaar, M.R. Transport spectroscopy of a graphene quantum dot fabricated by atomic force microscope nanolithography. Appl. Phys. Lett. 2013, 103, 183117. [Google Scholar] [CrossRef]
- Espinosa, F.M.; Ryu, Y.K.; Marinov, K.; Dumcenco, D.; Kis, A.; Garcia, R. Direct fabrication of thin layer MoS2 field-effect nanoscale transistors by oxidation scanning probe lithography. Appl. Phys. Lett. 2015, 106, 103503. [Google Scholar] [CrossRef]
- Delacour, C.; Pannetier, B.; Villegier, J.-C.; Bouchiat, V. Quantum and thermal phase slips in superconducting niobium nitride (NbN) ultrathin crystalline nanowire: Application to single photon detection. Nano Lett. 2012, 12, 3501–3506. [Google Scholar] [CrossRef] [PubMed]
- Yokoo, A.; Tanabe, T.; Kuramochi, E.; Notomi, M. Ultrahigh-Q nanocavities written with a nanoprobe. Nano Lett. 2011, 11, 3634–3642. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.F.; Tzeng, S.D.; Chen, H.Y.; Gwo, S. Silicon microlens structures fabricated by scanning-probe gray-scale oxidation. Opt. Lett. 2005, 30, 652–654. [Google Scholar] [CrossRef] [PubMed]
- Smolyaninov, I.I.; Mazzoni, D.L.; Davis, C.C. Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process. Appl. Phys. Lett. 1995, 67, 3859–3861. [Google Scholar] [CrossRef]
- Davy, S.; Spajer, M. Near field optics: Snapshot of the field emitted by a nanosource using a photosensitive polymer. Appl. Phys. Lett. 1996, 69, 3306–3308. [Google Scholar] [CrossRef]
- Dutoit, B.; Zeisel, D.; Deckert, V.; Zenobi, R. Laser-induced ablation through nanometer-sized tip apertures: Mechanistic aspects. J. Phys. Chem. B 1997, 101, 6955–6959. [Google Scholar] [CrossRef]
- Stöckle, R.; Setz, P.; Deckert, V.; Lippert, T.; Wokaun, A.; Zenobi, R. Nanoscale atmospheric pressure laser ablation-mass spectrometry. Anal. Chem. 2001, 73, 1399–1402. [Google Scholar] [CrossRef] [PubMed]
- Gorbunov, A.; Pompe, W. Thin film nanoprocessing by laser/STM combination. Phys. Status Solidi A Appl. 1994, 145, 333–338. [Google Scholar] [CrossRef]
- Lu, Y.F.; Mai, Z.H.; Qiu, G.; Chim, W.K. Laser-induced nano-oxidation on hydrogen-passivated Ge (100) surfaces under a scanning tunneling microscope tip. Appl. Phys. Lett. 1999, 75, 2359–2361. [Google Scholar] [CrossRef]
- Jersch, J.; Dickmann, K. Nanostructure fabrication using laser field enhancement in the near field of a scanning tunneling microscope tip. Appl. Phys. Lett. 1996, 68, 868–870. [Google Scholar] [CrossRef]
- Uppuluri, S.M.V.; Kinzel, E.C.; Li, Y.; Xu, X. Parallel optical nanolithography using nanoscale bowtie aperture array. Opt. Express 2010, 18, 7369–7375. [Google Scholar] [CrossRef] [PubMed]
- Chimmalgi, A.; Choi, T.Y.; Grigoropoulos, C.P.; Komvopoulos, K. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl. Phys. Lett. 2003, 82, 1146–1148. [Google Scholar] [CrossRef]
- Ryu, S.G. Laser assisted direct local synthesis of semiconducting nanowires. In Proceedings of the 2013 International Mechanical Engineering Congress and Exposition, San Diego, CA, USA, 15–21 November 2013.
- Kirsanov, A.; Kiselev, A.; Stepanov, A.; Polushkin, N. Femtosecond laser-induced nanofabrication in the near-field of atomic force microscope tip. J. Appl. Phys. 2003, 94, 6822–6826. [Google Scholar] [CrossRef]
- Jaschke, M.; Butt, H.-J. Deposition of organic material by the tip of a scanning force microscope. Langmuir 1995, 11, 1061–1064. [Google Scholar] [CrossRef]
- Piner, R.D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C.A. “Dip-pen” nanolithography. Science 1999, 283, 661–663. [Google Scholar] [CrossRef] [PubMed]
- Salaita, K.; Wang, Y.; Mirkin, C.A. Applications of dip-pen nanolithography. Nat Nano 2007, 2, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Ginger, D.S.; Zhang, H.; Mirkin, C.A. The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed. 2004, 43, 30–45. [Google Scholar] [CrossRef] [PubMed]
- Weeks, B.L.; Noy, A.; Miller, A.E.; De Yoreo, J.J. Effect of dissolution kinetics on feature size in dip-pen nanolithography. Phys. Rev. Lett. 2002, 88, 255505. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, P.E.; Whitman, L.J. Thiol diffusion and the role of humidity in “dip pen nanolithography”. Phys. Rev. Lett. 2002, 88, 156104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chung, S.-W.; Mirkin, C.A. Fabrication of sub-50-nm solid-state nanostructures on the basis of dip-pen nanolithography. Nano Lett. 2003, 3, 43–45. [Google Scholar] [CrossRef]
- Hua, Z.; Ki-Bum, L.; Zhi, L.; Chad, A.M. Biofunctionalized nanoarrays of inorganic structures prepared by dip-pen nanolithography. Nanotechnology 2003, 14, 1113. [Google Scholar]
- Kim, K.-H.; Moldovan, N.; Espinosa, H.D. A nanofountain probe with sub-100 nm molecular writing resolution. Small 2005, 1, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Sanedrin, R.G.; Ho, A.M.; Lee, S.W.; Moldovan, N.; Mirkin, C.A.; Espinosa, H.D. Direct delivery and submicrometer patterning of DNA by a nanofountain probe. Adv. Mater. 2008, 20, 330–334. [Google Scholar] [CrossRef]
- Wu, B.; Ho, A.; Moldovan, N.; Espinosa, H.D. Direct deposition and assembly of gold colloidal particles using a nanofountain probe. Langmuir 2007, 23, 9120–9123. [Google Scholar] [CrossRef] [PubMed]
- Loh, O.; Lam, R.; Chen, M.; Moldovan, N.; Huang, H.; Ho, D.; Espinosa, H.D. Nanofountain-probe-based high-resolution patterning and single-cell injection of functionalized nanodiamonds. Small 2009, 5, 1667–1674. [Google Scholar] [CrossRef] [PubMed]
- Loh, O.Y.; Ho, A.M.; Rim, J.E.; Kohli, P.; Patankar, N.A.; Espinosa, H.D. Electric field-induced direct delivery of proteins by a nanofountain probe. Proc. Natl. Acad. Sci. USA 2008, 105, 16438–16443. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.J.; Wilkins, M.J.; Beamson, G.; Davies, M.C.; Jackson, D.E.; Scholes, P.D.; Tendler, S.J.B.; Williams, P.M. The demonstration of controlled surface modification achievable with a scanning tunnelling microscope on graphite, metallic films, organic molecules and polymeric biomolecules. Nanotechnology 1992, 3, 98. [Google Scholar] [CrossRef]
- Silva, L.A.; Laitenberger, P.; Palmer, R.E. Nanofabrication of metal structures in gold films deposited on mica. J. Vac. Sci. Technol. B 1993, 11, 1992–1999. [Google Scholar] [CrossRef]
- Jiang, X.; Wu, G.; Du, Z.; Ma, K.-J.; Shirakashi, J.-I.; Tseng, A.A. Nanoscale scratching of platinum thin films using atomic force microscopy with DLC tips. J. Vac. Sci. Technol. B 2012, 30, 021605. [Google Scholar] [CrossRef]
- Sumomogi, T.; Endo, T.; Kuwahara, K.; Kaneko, R.; Miyamoto, T. Micromachining of metal surfaces by scanning probe microscope. J. Vac. Sci. Technol. B 1994, 12, 1876–1880. [Google Scholar] [CrossRef]
- Niedermann, P.; Hänni, W.; Blanc, N.; Christoph, R.; Burger, J. Chemical vapor deposition diamond for tips in nanoprobe experiments. J. Vac. Sci. Technol. A 1996, 14, 1233–1236. [Google Scholar] [CrossRef]
- Santinacci, L.; Djenizian, T.; Hildebrand, H.; Ecoffey, S.; Mokdad, H.; Campanella, T.; Schmuki, P. Selective palladium electrochemical deposition onto AFM-scratched silicon surfaces. Electrochim. Acta 2003, 48, 3123–3130. [Google Scholar] [CrossRef]
- Filho, H.D.F.; Maurício, M.H.P.; Ponciano, C.R.; Prioli, R. Metal layer mask patterning by force microscopy lithography. Mater. Sci. Eng. B 2004, 112, 194–199. [Google Scholar] [CrossRef]
- Fletcher, P.C.; Felts, J.R.; Dai, Z.; Jacobs, T.D.; Zeng, H.; Lee, W.; Sheehan, P.E.; Carlisle, J.A.; Carpick, R.W.; King, W.P. Wear-resistant diamond nanoprobe tips with integrated silicon heater for tip-based nanomanufacturing. ACS Nano 2010, 4, 3338–3344. [Google Scholar] [CrossRef] [PubMed]
- Rank, R.; Brückl, H.; Kretz, J.; Mönch, I.; Reiss, G. Nanoscale modification of conducting lines with a scanning force microscope. Vacuum 1997, 48, 467–472. [Google Scholar] [CrossRef]
- Klehn, B.; Kunze, U. Nanolithography with an atomic force microscope by means of vector-scan controlled dynamic plowing. J. Appl. Phys. 1999, 85, 3897–3903. [Google Scholar] [CrossRef]
- Jung, T.A.; Moser, A.; Hug, H.J.; Brodbeck, D.; Hofer, R.; Hidber, H.R.; Schwarz, U.D. The atomic force microscope used as a powerful tool for machining surfaces. Ultramicroscopy 1992, 42, 1446–1451. [Google Scholar] [CrossRef]
- Wendel, M.; Lorenz, H.; Kotthaus, J.P. Sharpened electron beam deposited tips for high resolution atomic force microscope lithography and imaging. Appl. Phys. Lett. 1995, 67, 3732–3734. [Google Scholar] [CrossRef]
- Li, S.F.Y.; Ng, H.T.; Zhang, P.C.; Ho, P.K.H.; Zhou, L.; Bao, G.W.; Chan, S.L.H. Submicrometer lithography of a silicon substrate by machining of photoresist using atomic force microscopy followed by wet chemical etching. Nanotechnology 1997, 8, 76. [Google Scholar] [CrossRef]
- Klehn, B.; Kunze, U. SiO2 and Si nanoscale patterning with an atomic force microscope. Superlattices Microstruct. 1998, 23, 441–444. [Google Scholar] [CrossRef]
- Borislav, V.; Markus, K.; Aleksandar, M.; Andreas, N.; Uroš, R.; Djordje, J.; Christian, G.; Christian, T.; Radoš, G. Atomic force microscopy based manipulation of graphene using dynamic plowing lithography. Nanotechnology 2013, 24, 015303. [Google Scholar]
- Guo, J.; Yu, B.; Wang, X.; Qian, L. Nanofabrication on monocrystalline silicon through friction-induced selective etching of Si3N4 mask. Nanoscale Res. Lett. 2014, 9, 241. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Hamidi, A.; Altmeyer, S.; Köster, T.; Spangenberg, B.; Kurz, H. Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography. J. Vac. Sci. Technol. B 1998, 16, 2822–2824. [Google Scholar] [CrossRef]
- Notargiacomo, A.; Foglietti, V.; Cianci, E.; Capellini, G.; Adami, M.; Faraci, P.; Evangelisti, F.; Nicolini, C. Atomic force microscopy lithography as a nanodevice development technique. Nanotechnology 1999, 10, 458. [Google Scholar] [CrossRef]
- Te-Hua, F.; Cheng, I.W.; Jee-Gong, C. Machining characterization of the nano-lithography process using atomic force microscopy. Nanotechnology 2000, 11, 181. [Google Scholar]
- Yu-Ju, C.; Ju-Hung, H.; Heh-Nan, L. Fabrication of metal nanowires by atomic force microscopy nanoscratching and lift-off process. Nanotechnology 2005, 16, 1112. [Google Scholar]
- Porter, L.A.; Ribbe, A.E.; Buriak, J.M. Metallic nanostructures via static plowing lithography. Nano Lett. 2003, 3, 1043–1047. [Google Scholar] [CrossRef]
- Guo, J.; Song, C.; Li, X.; Yu, B.; Dong, H.; Qian, L.; Zhou, Z. Fabrication mechanism of friction-induced selective etching on Si(100) surface. Nanoscale Res. Lett. 2012, 7, 152. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Geng, Y.; Hu, Z. Recent advances in AFM tip-based nanomechanical machining. Int. J. Mach. Tools Manuf. 2015, 99, 1–18. [Google Scholar] [CrossRef]
- Yan, Y.; Hu, Z.; Zhao, X.; Sun, T.; Dong, S.; Li, X. Top-down nanomechanical machining of three-dimensional nanostructures by atomic force microscopy. Small 2010, 6, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Yan, Y.; Brousseau, E.; Cui, X.; Yu, B.; Zhao, X.; Hu, Z. Machining complex three-dimensional nanostructures with an atomic force microscope through the frequency control of the tip reciprocating motions. J. Manuf. Sci. Eng. 2016, 138, 124501. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, Y.; Li, J.; Hu, Z.; Zhao, X. Controlled nanodot fabrication by rippling polycarbonate surface using an AFM diamond tip. Nanoscale Res. Lett. 2014, 9, 372. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaran, H.; Gotsmann, B.; Sebastian, A.; Drechsler, U.; Lantz, M.A.; Despont, M.; Jaroenapibal, P.; Carpick, R.W.; Chen, Y.; Sridharan, K. Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat Nano 2010, 5, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Sohn, L.L.; Willett, R.L. Fabrication of nanostructures using atomic-force-microscope-based lithography. Appl. Phys. Lett. 1995, 67, 1552–1554. [Google Scholar] [CrossRef]
- Dobisz, E.A.; Marrian, C.R.K.; Salvino, R.E.; Ancona, M.A.; Perkins, F.K.; Turner, N.H. Reduction and elimination of proximity effects. J. Vac. Sci. Technol. B 1993, 11, 2733–2740. [Google Scholar] [CrossRef]
- Marrian, C.R.K.; Dobisz, E.A.; Colton, R.J. Lithographic studies of an e-beam resist in a vacuum scanning tunneling microscope. J. Vac. Sci. Technol. A 1990, 8, 3563–3569. [Google Scholar] [CrossRef]
- Dobisz, E.A.; Marrian, C.R.K. Sub-30 nm lithography in a negative electron beam resist with a vacuum scanning tunneling microscope. Appl. Phys. Lett. 1991, 58, 2526–2528. [Google Scholar] [CrossRef]
- Marrian, C.R.K.; Dobisz, E.A. High-resolution lithography with a vacuum stm. Ultramicroscopy 1992, 42, 1309–1316. [Google Scholar] [CrossRef]
- Majumdar, A.; Oden, P.I.; Carrejo, J.P.; Nagahara, L.A.; Graham, J.J.; Alexander, J. Nanometer-scale lithography using the atomic force microscope. Appl. Phys. Lett. 1992, 61, 2293–2295. [Google Scholar] [CrossRef]
- Park, S.W.; Soh, H.T.; Quate, C.F.; Park, S.I. Nanometer scale lithography at high scanning speeds with the atomic force microscope using spin on glass. Appl. Phys. Lett. 1995, 67, 2415–2417. [Google Scholar] [CrossRef]
- Lydia, A.; Bungo, T.; Naoki, M.; Yoshitada, I. Scanning probe lithography with negative and positive electron beam resists. Jpn. J. Appl. Phys. 2013, 52, 056501. [Google Scholar]
- Chen, S.; Xu, H.; Goh, K.E.J.; Lerwen, L.; Randall, J.N. Patterning of sub-1 nm dangling-bond lines with atomic precision alignment on H:Si(100) surface at room temperature. Nanotechnology 2012, 23, 275301. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Mirkin, C.A. A nanoplotter with both parallel and serial writing capabilities. Science 2000, 288, 1808–1811. [Google Scholar] [CrossRef] [PubMed]
- Ming, Z.; David, B.; Sung-Wook, C.; Seunghun, H.; Kee, S.R.; Zhifang, F.; Chad, A.M.; Chang, L. A MEMS nanoplotter with high-density parallel dip-pen nanolithography probe arrays. Nanotechnology 2002, 13, 212. [Google Scholar]
- Philip, C.P.; Armin, W.K.; Felix, H.; Michel, D.; Urs, D. Rapid turnaround scanning probe nanolithography. Nanotechnology 2011, 22, 275306. [Google Scholar]
- Terris, B.D.; Mamin, H.J.; Rugar, D. Near-field optical data storage. Appl. Phys. Lett. 1996, 68, 141–143. [Google Scholar] [CrossRef]
- Garcia, R.; Knoll, A.W.; Riedo, E. Advanced scanning probe lithography. Nat Nano 2014, 9, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Hyon, C.K.; Choi, S.C.; Hwang, S.W.; Ahn, D.; Kim, Y.; Kim, E.K. Direct nanometer-scale patterning by the cantilever oscillation of an atomic force microscope. Appl. Phys. Lett. 1999, 75, 292–294. [Google Scholar] [CrossRef]
- Martinez, J.; Martínez, R.V.; Garcia, R. Silicon nanowire transistors with a channel width of 4 nm fabricated by atomic force microscope nanolithography. Nano Lett. 2008, 8, 3636–3639. [Google Scholar] [CrossRef]
- Salaita, K.; Wang, Y.; Fragala, J.; Vega, R.A.; Liu, C.; Mirkin, C.A. Massively parallel dip–pen nanolithography with 55 000-pen two-dimensional arrays. Angew. Chem. 2006, 118, 7378–7381. [Google Scholar] [CrossRef]
- Huo, F.; Zheng, Z.; Zheng, G.; Giam, L.R.; Zhang, H.; Mirkin, C.A. Polymer pen lithography. Science 2008, 321, 1658–1660. [Google Scholar] [CrossRef] [PubMed]
- Murat Kaya, Y.; Jun, Z. A novel micromachining technique for the batch fabrication of scanning probe arrays with precisely defined tip contact areas. J. Micromech. Microeng. 2008, 18, 085015. [Google Scholar] [CrossRef]
- Eichelsdoerfer, D.J.; Liao, X.; Cabezas, M.D.; Morris, W.; Radha, B.; Brown, K.A.; Giam, L.R.; Braunschweig, A.B.; Mirkin, C.A. Large-area molecular patterning with polymer pen lithography. Nat. Protoc. 2013, 8, 2548–2560. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Daniel, W.L.; Giam, L.R.; Huo, F.; Senesi, A.J.; Zheng, G.; Mirkin, C.A. Multiplexed protein arrays enabled by polymer pen lithography: Addressing the inking challenge. Angew. Chem. 2009, 121, 7762–7765. [Google Scholar] [CrossRef]
- Shim, W.; Braunschweig, A.B.; Liao, X.; Chai, J.; Lim, J.K.; Zheng, G.; Mirkin, C.A. Hard-tip, soft-spring lithography. Nature 2011, 469, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, J.L.; Brown, K.A.; Kluender, E.J.; Cabezas, M.D.; Chen, P.-C.; Mirkin, C.A. Hard transparent arrays for polymer pen lithography. ACS Nano 2016, 10, 3144–3148. [Google Scholar] [CrossRef] [PubMed]
- Huan, H.; Junghoon, Y.; Glennys, M.; Yaofeng, C.; Mark, A.S.; William, P.K. Nano-fabrication with a flexible array of nano-apertures. Nanotechnology 2012, 23, 175303. [Google Scholar]
- Miao, X. Array-Based Planar Nanowire High Electron Mobility Transistor; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 2014. [Google Scholar]
- Liao, X.; Brown, K.A.; Schmucker, A.L.; Liu, G.; He, S.; Shim, W.; Mirkin, C.A. Desktop nanofabrication with massively multiplexed beam pen lithography. Nat. Commun. 2013, 4, 2103. [Google Scholar] [CrossRef] [PubMed]
- Yu-Zen, C.; Chun-Ying, W.; Yung-Chun, L. Beam pen lithography based on arrayed polydimethylsiloxane (PDMS) micro-pyramids spin-coated with carbon black photo-resist. J. Micromech. Microeng. 2014, 24, 045007. [Google Scholar]
- Yuan-Jen, C.; Han-Kuan, H. Parallel multi-step nanolithography by nanoscale Cu-covered h-PDMS tip array. J. Micromech. Microeng. 2014, 24, 095022. [Google Scholar]
- Zhou, Y.; Xie, Z.; Brown, K.A.; Park, D.J.; Zhou, X.; Chen, P.-C.; Hirtz, M.; Lin, Q.-Y.; Dravid, V.P.; Schatz, G.C.; et al. Apertureless cantilever-free pen arrays for scanning photochemical printing. Small 2015, 11, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-Y.; Lee, Y.-C. Apertureless beam pen lithography based on fully metal-coated polyurethane-acrylate (PUA) pyramidal microstructure array. Opt. Express 2014, 22, 10593–10604. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Tao, K.; Miao, J. Production of centimeter-scale sub-wavelength nanopatterns by controlling the light path of adhesive photomasks. J. Mater. Chem. C 2015, 3, 6796–6808. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y.; Guo, Y.; Feng, S.; Zou, B.; Mao, H.; Yu, C.-H.; Tian, D.; Huang, W.; Huo, F. Centimeter-scale subwavelength photolithography using metal-coated elastomeric photomasks with modulated light intensity at the oblique sidewalls. Langmuir 2015, 31, 5005–5013. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Xie, Z.; Park, D.J.; Liao, X.; Brown, K.A.; Chen, P.-C.; Zhou, Y.; Schatz, G.C.; Mirkin, C.A. Liquid-phase beam pen lithography. Small 2016, 12, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Kaestner, M.; Ivanov, T.; Schuh, A.; Ahmad, A.; Angelov, T.; Krivoshapkina, Y.; Budden, M.; Hofer, M.; Lenk, S.; Zoellner, J.-P.; et al. Scanning probes in nanostructure fabrication. J. Vac. Sci. Technol. B 2014, 32, 06F101. [Google Scholar] [CrossRef]
- Suhas, S.; Hoe Joon, K.; Huan, H.; William, P.K. Parallel nanoimaging and nanolithography using a heated microcantilever array. Nanotechnology 2014, 25, 014001. [Google Scholar]
- Kim, K.J.; Park, K.; Lee, J.; Zhang, Z.M.; King, W.P. Nanotopographical imaging using a heated atomic force microscope cantilever probe. Sens. Actuators A Phys. 2007, 136, 95–103. [Google Scholar] [CrossRef]
- Somnath, S.; King, W.P. Heated atomic force cantilever closed loop temperature control and application to high speed nanotopography imaging. Sens. Actuators A Phys. 2013, 192, 27–33. [Google Scholar] [CrossRef]
- Hoe Joon, K.; William, P.K. A study of long term operation and reliability of heated atomic force microscope cantilevers. J. Micromech. Microeng. 2015, 25, 065003. [Google Scholar]
- Lee, J.; King, W.P. Liquid operation of silicon microcantilever heaters. IEEE Sen. J. 2008, 8, 1805–1806. [Google Scholar] [CrossRef]
- Kaestner, M.; Aydogan, C.; Ivanov, T.; Ahmad, A.; Angelov, T.; Reum, A.; Ishchuk, V.; Krivoshapkina, Y.; Hofer, M.; Lenk, S.; et al. Advanced electric-field scanning probe lithography on molecular resist using active cantilever. J. Micro/Nanolithogr. MEMS MOEMS 2015, 14, 031202. [Google Scholar] [CrossRef]
- Cheong, L.L.; Paul, P.; Holzner, F.; Despont, M.; Coady, D.J.; Hedrick, J.L.; Allen, R.; Knoll, A.W.; Duerig, U. Thermal probe maskless lithography for 27.5 nm half-pitch si technology. Nano Lett. 2013, 13, 4485–4491. [Google Scholar] [CrossRef] [PubMed]
- Minne, S.C.; Yaralioglu, G.; Manalis, S.R.; Adams, J.D.; Zesch, J.; Atalar, A.; Quate, C.F. Automated parallel high-speed atomic force microscopy. Appl. Phys. Lett. 1998, 72, 2340–2342. [Google Scholar] [CrossRef] [Green Version]
- Minne, S.C.; Adams, J.D.; Yaralioglu, G.; Manalis, S.R.; Atalar, A.; Quate, C.F. Centimeter scale atomic force microscope imaging and lithography. Appl. Phys. Lett. 1998, 73, 1742–1744. [Google Scholar] [CrossRef] [Green Version]
- Rachel, J.C.; Bernd, G.; Armin, K.; Urs, D. Thermo-mechanical probe storage at Mbps single-probe data rates and tbit in −2 densities. Nanotechnology 2008, 19, 395305. [Google Scholar]
- Somnath, S.; Corbin, E.A.; King, W.P. Six-fold improvement in nanotopography sensing via temperature control of a heated atomic force microscope cantilever. IEEE Sens. 2010, 2010, 2354–2357. [Google Scholar]
- Sahoo, D.R.; Sebastian, A.; Salapaka, M.V. Transient-signal-based sample-detection in atomic force microscopy. Appl. Phys. Lett. 2003, 83, 5521–5523. [Google Scholar] [CrossRef]
- Salapaka, S.; De, T.; Sebastian, A. Sample-profile estimate for fast atomic force microscopy. Appl. Phys. Lett. 2005, 87, 053112. [Google Scholar] [CrossRef]
- Hoe Joon, K.; Zhenting, D.; William, P.K. Thermal crosstalk in heated microcantilever arrays. J. Micromech. Microeng. 2013, 23, 025001. [Google Scholar]
- Favre, M.; Polesel-Maris, J.; Overstolz, T.; Niedermann, P.; Dasen, S.; Gruener, G.; Ischer, R.; Vettiger, P.; Liley, M.; Heinzelmann, H.; et al. Parallel AFM imaging and force spectroscopy using two-dimensional probe arrays for applications in cell biology. J. Mol. Recognit. 2011, 24, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Sache, L.; Kawakatsu, H.; Emery, Y.; Bleuler, H. Massively parallel atomic force microscope with digital holographic readout. J. Phys. Conf. Ser. 2007, 61, 668. [Google Scholar] [CrossRef]
- Polesel-Maris, J.; Aeschimann, L.; Meister, A.; Ischer, R.; Bernard, E.; Akiyama, T.; Giazzon, M.; Niedermann, P.; Staufer, U.; Pugin, R.; et al. Piezoresistive cantilever array for life sciences applications. J. Phys. Conf. Ser. 2007, 61, 955. [Google Scholar] [CrossRef]
- Aeschimann, L.; Meister, A.; Akiyama, T.; Chui, B.W.; Niedermann, P.; Heinzelmann, H.; De Rooij, N.F.; Staufer, U.; Vettiger, P. Scanning probe arrays for life sciences and nanobiology applications. Microelectron. Eng. 2006, 83, 1698–1701. [Google Scholar] [CrossRef]
- Sulzbach, T.; Engl, W.; Maier, R.; Diebel, J.; Dontsov, D.D.; Langlotz, E.; Schott, D.W. Cantilever arrays with integrated actuation and sensing for parallel SPM. Procedia Eng. 2010, 5, 621–624. [Google Scholar] [CrossRef]
- Schneider, A.; Ibbotson, R.H.; Dunn, R.J.; Huq, E. Arrays of SU-8 microcantilevers with integrated piezoresistive sensors for parallel AFM applications. Microelectron. Eng. 2011, 88, 2390–2393. [Google Scholar] [CrossRef]
- Ivanova, K.; Sarov, Y.; Ivanov, T.; Frank, A.; Zöllner, J.; Bitterlich, C.; Wenzel, U.; Volland, B.E.; Klett, S.; Rangelow, I.W.; et al. Scanning proximal probes for parallel imaging and lithography. J. Vac. Sci. Technol. B 2008, 26, 2367–2373. [Google Scholar] [CrossRef]
- Carroll, K.M.; Lu, X.; Kim, S.; Gao, Y.; Kim, H.-J.; Somnath, S.; Polloni, L.; Sordan, R.; King, W.P.; Curtis, J.E.; et al. Parallelization of thermochemical nanolithography. Nanoscale 2014, 6, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Seong, M.; Somnath, S.; Kim, H.J.; King, W.P. Parallel nanoimaging using an array of 30 heated microcantilevers. RSC Adv. 2014, 4, 24747–24754. [Google Scholar] [CrossRef]
- Hoe Joon, K.; Nicolaie, M.; Jonathan, R.F.; Suhas, S.; Zhenting, D.; Tevis, D.B.J.; Robert, W.C.; John, A.C.; William, P.K. Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever. Nanotechnology 2012, 23, 495302. [Google Scholar]
- King, W.P.; Kenny, T.W.; Goodson, K.E.; Cross, G.L.W.; Despont, M.; Durig, U.T.; Rothuizen, H.; Binnig, G.; Vettiger, P. Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation. J. Microelectromech. Syst. 2002, 11, 765–774. [Google Scholar] [CrossRef]
- Binnig, G.; Despont, M.; Drechsler, U.; Häberle, W.; Lutwyche, M.; Vettiger, P.; Mamin, H.J.; Chui, B.W.; Kenny, T.W. Ultrahigh-density atomic force microscopy data storage with erase capability. Appl. Phys. Lett. 1999, 74, 1329–1331. [Google Scholar] [CrossRef]
- Liu, H.; Hoeppener, S.; Schubert, U.S. Nanoscale materials patterning by local electrochemical lithography. Adv. Eng. Mater. 2016, 18, 890–902. [Google Scholar] [CrossRef]
- Wu, J.; Miao, J. Production of centimeter-scale gradient patterns by graded elastomeric tip array. ACS Appl. Mater. Interfaces 2015, 7, 6991–7000. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, M.; Nalaskowski, J.W.; Cook, L.M. Chemical mechanical planarization: Slurry chemistry, materials, and mechanisms. Chem. Rev. 2010, 110, 178–204. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.; Hocken, R.; Trumper, D. The long-range scanning stage: A novel platform for scanned-probe microscopy. Precis. Eng. 2000, 24, 191–209. [Google Scholar] [CrossRef]
- Murat Kaya, Y.; Jun, Z. Microfabrication of colloidal scanning probes with controllable tip radii of curvature. J. Micromech. Microeng. 2009, 19, 105021. [Google Scholar]
- Chen, Y.; Xiang, Q.; Li, Z.; Wang, Y.; Meng, Y.; Duan, H. “Sketch and peel” lithography for high-resolution multiscale patterning. Nano Lett. 2016, 16, 3253–3259. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Bi, K.; Wang, Q.; Zheng, M.; Liu, Q.; Han, Y.; Yang, J.; Chang, S.; Zhang, G.; Duan, H. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via “sketch and peel” strategy. ACS Nano 2016, 10, 11228–11236. [Google Scholar] [CrossRef] [PubMed]
TBN Types | Reported Resolution | Scanning Speed | Material Choice | Need Vacuum | Need Humidity Control | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|
Atom-removal-based | Sub-1 nm [152] | Slow 80 nm/s [40] | Semiconductors metals | Ultrahigh vacuum (<10−9 Torr) | No | Atomic precision, good for building molecular devices | Super slow, low throughput |
DPN | 10 nm [153] | Slow 0.1–4 µm/s [105,154] | Biological Materials, Chemicals | No | yes | Good for biological patterning, Compatible with self-assembly | Slow speed, need inking |
tDPN | 10 nm [59] | Medium 0.1–200 µm/s [59,63] | Polymer & metals with low melting temperatures | No | No | Compatible with semiconductor processing, good reproducibility | Medium speed, need inking |
Thermal-mechanical | Sub-20 nm [77] | Super-fast 20 mm/s [155]–1.25 m/s [156] | Polymer | No | No | Super-fast, left indentation | Need extra processing to obtain usable nanostructures |
TCNL | 10 nm [157] | Fast 1 mm/s [157] | Specific Resist | No | No | Fast, grey scale chemical patterning | Need specific polymer resist and require heated AFM tips |
Mechanical removal | 10 nm [158] | Medium 0.1–40 µm/s [122] | Metal, Semiconductors, Graphene | No | No | Easy to implement, wide selection of materials | Tip wear, debris formation, speed needs to be tuned to the material properties |
Electro-chemical | 4 nm [159] | Fast 0.5 µm/s–1 mm/s [157] | Metal, Semiconductors, Graphene | No | Yes | Fast, Room Temperature | Need electrical bias, Limited oxide thickness, Limited processing speed |
Optical | 10 nm [99] | Medium 1–20 µm/s [103] | Metal, polymer | No | No | Easier to scale up, ambient conditions | Requires extra optics |
Field Emission | 35 nm [149] | Fast 2 µm/s [151]–1 mm/s [150] | Resist, spin-on glass | Yes/No | No | No proximity effect compared to high energy electron beams | Requires electron-sensitive resist, external circuits to control the small current |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Kim, H.J.; Somnath, S. Tip-Based Nanofabrication for Scalable Manufacturing. Micromachines 2017, 8, 90. https://doi.org/10.3390/mi8030090
Hu H, Kim HJ, Somnath S. Tip-Based Nanofabrication for Scalable Manufacturing. Micromachines. 2017; 8(3):90. https://doi.org/10.3390/mi8030090
Chicago/Turabian StyleHu, Huan, Hoe Joon Kim, and Suhas Somnath. 2017. "Tip-Based Nanofabrication for Scalable Manufacturing" Micromachines 8, no. 3: 90. https://doi.org/10.3390/mi8030090
APA StyleHu, H., Kim, H. J., & Somnath, S. (2017). Tip-Based Nanofabrication for Scalable Manufacturing. Micromachines, 8(3), 90. https://doi.org/10.3390/mi8030090